

# Moss Vale Road North Urban Release Area Traffic Study

**Internal Traffic Analysis Report** 

# Shoalhaven City Council

29 July 2020

#### **Gold Coast**

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377 Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

W: www.bitziosconsulting.com.au

E: admin@bitziosconsulting.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

#### **Document Issue History**

| Report File Name                                            | Prepared                  | Reviewed   | Issued     | Date       | Issued to                                                                            |
|-------------------------------------------------------------|---------------------------|------------|------------|------------|--------------------------------------------------------------------------------------|
| P4627.001R Moss Vale Road North URA<br>Traffic Study Report | J. Beame /<br>B. Campbell | L.Johnston | L.Johnston | 14/07/2020 | Matthew Rose<br>Shoalhaven City Council<br><u>matthew.rose@shoalhaven.nsw.gov.au</u> |
| P4627.002R Moss Vale Road North URA<br>Traffic Study Report | J. Beame /<br>B. Campbell | L.Johnston | L.Johnston | 22/07/2020 | Matthew Rose<br>Shoalhaven City Council<br><u>matthew.rose@shoalhaven.nsw.gov.au</u> |
| P4627.003R Moss Vale Road North URA<br>Traffic Study Report | J. Beame /<br>B. Campbell | L.Johnston | L.Johnston | 27/07/2020 | Matthew Rose<br>Shoalhaven City Council<br><u>matthew.rose@shoalhaven.nsw.gov.au</u> |
| P4627.004R Moss Vale Road North URA<br>Traffic Study Report | J. Beame /<br>B. Campbell | L.Johnston | L.Johnston | 29/07/2020 | Matthew Rose<br>Shoalhaven City Council<br><u>matthew.rose@shoalhaven.nsw.gov.au</u> |
| P4627.005R Moss Vale Road North URA<br>Traffic Study Report | J. Beame /<br>B. Campbell | L.Johnston | L.Johnston | 29/07/2020 | Matthew Rose<br>Shoalhaven City Council<br><u>matthew.rose@shoalhaven.nsw.gov.au</u> |



# CONTENTS

|       |                                                                                                       | Page           |
|-------|-------------------------------------------------------------------------------------------------------|----------------|
| 1.    | INTRODUCTION                                                                                          | 6              |
| 1.1   | Background                                                                                            | 6              |
| 1.2   | Context                                                                                               | 6              |
| 1.3   | Scope                                                                                                 | 7              |
| 2.    | Key Relevant Guidelines & Standards                                                                   | 8              |
| 2.1   | Shoalhaven Development Control Plan – Draft Moss Vale Road North Urban Release Area                   | 8              |
| 2.2   | Shoalhaven Development Control Plan NB3 – Moss Vale Road South Urban Release Area                     | 8              |
| 2.3   | Nowra-Bomaderry Structure Plan (2006)                                                                 | 8              |
| 2.4   | Moss Vale Road North Urban Release Area Transport Report                                              | 8              |
| 2.5   | Shoalhaven Development Control Plan – Chapter G11: Subdivision of Land                                | 8              |
| 2.6   | Transport for New South Wales – Guidelines for Public Transport Capable Infrastructure in Gr<br>Sites | reenfield<br>8 |
| 2.7   | Australian Standards AS2890.5 Parking Facilities Part 5: On-street Parking (2020)                     | 9              |
| 2.8   | Shoalhaven Local Environment Plan                                                                     | 9              |
| 2.9   | Austroads Guidelines                                                                                  | 9              |
| 2.9.1 | Austroads Guide to Road Design                                                                        | 9              |
| 2.9.2 | Austroads Guide to Traffic Management                                                                 | 9              |
| 2.10  | A National Resource Document for Residential Development (AMCORD)                                     | 9              |
| 2.11  | TfNSW Guidelines                                                                                      | 9              |
| 3.    | PROPOSED DEVELOPMENT                                                                                  | 10             |
| 3.1   | Development Details                                                                                   | 10             |
| 4.    | EXTERNAL TRAFFIC ANALYSIS                                                                             | 13             |
| 4.1   | Introduction                                                                                          | 13             |
| 4.2   | SIDRA Development                                                                                     | 13             |
| 4.3   | Moss Vale Road / Bells Lane / Far North Collector Road Intersection                                   | 13             |
| 4.4   | Moss Vale Road / Moss Vale Road South URA Access / Central Boulevard                                  | 13             |
| 4.5   | Pestells Lane Interchange & Boxsells Lane Intersection                                                | 14             |
| 4.6   | External Analysis Summary                                                                             | 14             |
| 5.    | INTERNAL ROAD NETWORK                                                                                 | 16             |
| 5.1   | Overview                                                                                              | 16             |
| 5.2   | Proponent's Proposed Road Network Layout and Typologies                                               | 16             |
| 5.3   | Council Review of Proponent's Proposed Road Network Layout                                            | 17             |
| 5.4   | Forecast Traffic Volumes                                                                              | 18             |
| 5.4.1 | Forecast Peak Hour Traffic Volumes                                                                    | 18             |
| 5.4.2 | Forecast Daily Traffic Volumes                                                                        | 18             |
| 5.5   | Cross Section Components                                                                              | 18             |
| 5.5.1 | Travel Lanes                                                                                          | 18             |
| 5.5.2 | Parking Lanes                                                                                         | 18             |
| 5.5.3 | Offset                                                                                                | 19             |
| 5.5.4 | Pathway                                                                                               | 19             |
| 5.5.5 | Planting                                                                                              | 19             |



| 5.5.6  | Median                                | 20 |
|--------|---------------------------------------|----|
| 5.6    | Road Typology Assessment              | 20 |
| 5.6.1  | Road Typology Assessment Mechanism    | 20 |
| 5.6.2  | Council's Proposed Road Typology      | 20 |
| 5.6.3  | Proposed Road Cross Sections          | 21 |
| 5.6.4  | Corner Truncations                    | 26 |
| 5.6.5  | Kerb Returns                          | 26 |
| 5.6.6  | Cul-de-sacs                           | 27 |
| 5.6.7  | Recommendations                       | 27 |
| 5.7    | Roundabout Assessment                 | 28 |
| 5.7.1  | Assessment Locations                  | 28 |
| 5.7.2  | Capacity Mechanisms                   | 29 |
| 5.7.3  | Intersection Parameters and Geometry  | 30 |
| 5.7.4  | Intersection Scenarios                | 31 |
| 5.7.5  | Model Outputs                         | 33 |
| 5.7.6  | Collector Road Roundabouts            | 33 |
| 5.7.7  | Street Roundabouts                    | 33 |
| 5.7.8  | Results Summary                       | 33 |
| 5.7.9  | LATM Assessment                       | 34 |
| 5.7.10 | Turn Warrants Assessment              | 34 |
| 5.7.11 | Recommendations                       | 35 |
| 5.8    | Retail Centre Assessment              | 36 |
| 5.8.1  | Car Parking Assessment                | 36 |
| 5.8.2  | Alternative Locations                 | 38 |
| 5.9    | Proponent Central Boulevard Alignment | 38 |
| 6.     | PUBLIC AND ACTIVE TRANSPORT           | 40 |
| 6.1    | Public Transport                      | 40 |
| 6.2    | Active Transport                      | 43 |
| 6.2.1  | Shared Use Pathway Network            | 43 |
| 6.2.2  | Pedestrian Pathway Walking            | 46 |
| 7.     | CONCLUSION                            | 47 |

#### **Tables**

- Table 3.1: Proposed Development Land Zoning
- Table 5.1: Australian Standards Parallel Parking Space Width Cars and Light Vehicles
- Table 5.2: Austroads Guide to Road Design Shared Path Widths
- Table 5.3:
   Council Cycleway and Pathway Design Minimum Design Standards
- Table 5.4: Control Volumes for Road Typology
- Table 5.5:
   Proposed Road Cross Section Collector Road with Median
- Table 5.6:
   Proposed Road Cross Section Collector Road without Median
- Table 5.7:
   Recommended Road Cross Section Collector Road Tier 1
- Table 5.8:
   Recommended Road Cross Section Collector Road Tier 2
- Table 5.9: Proposed Road Cross Section Local Street
- Table 5.10: Proposed Road Cross Section Rural Edge Local Street
- Table 5.11: Proposed Road Cross Section Retail Parking Streets
- Table 5.12: Proposed Road Cross Section Half Local Street (Construction Boundaries)
- Table 5.13:
   Recommended Road Cross Section Local and Retail Street



- Table 5.14: Proposed Road Cross Section Riparian Edge Local Street
- Table 5.15: Proposed Road Cross Section Green Street Option 1
- Table 5.16: Proposed Road Cross Section Green Street Option 2
- Table 5.17: Proposed Road Cross Section Rural Edge Green Street
- Table 5.18: Proposed Road Cross Section Riparian Edge Green Street
- Table 5.19: Recommended Cross Section Riparian Street
- Table 5.20:
   Proposed Road Cross Section Rear Laneway
- Table 5.21: Recommended Cross Section Rear Laneway
- Table 5.22: Recommended Cross Section Access Street Tier 1
- Table 5.23: Recommended Cross Section Access Street Tier 2
- Table 5.24: Recommended Design of Corner Truncations
- Table 5.25: Recommended Minimum Kerb Return Radium in Residential Streets
- Table 5.26: Control Delay for Vehicle LOS Calculations
- Table 5.27: Internal Roundabout Island Radius and Circulating Width (For purposes of Traffic modelling)
- Table 5.28: Spacing of Intersections Along Residential Streets
- Table 5.29: SIDRA Roundabout Layouts
- Table 5.30: Internal URA Intersections Results Summary
- Table 5.31: Spacing of Junctions Along Residential Streets
- Table 5.32: Parallel On-street Car Parking Dimensions
- Table 5.33: Angled (90°) On-street Car Parking Dimensions
- Table 5.34: Maximum Retail Street On-street Car Parking Provisions
- Table 5.35: Retail Component Car Parking Requirements
- Table 6.1: Public Transport Compliance to TfNSW Guidelines

#### **Figures**

- Figure 1.1: MRVN URA Location
- Figure 3.1: Proposed Development Zoning
- Figure 3.2: Council's Indicative Staging Plan
- Figure 5.1: Proponent's Road Typology Plan
- Figure 5.2: Proponent's Road Typology with Council's Original Amendments (Prior to the May 2020 TRACKS Update)
- Figure 5.3: Proposed Road Network Layout and Typology
- Figure 5.4: Recommended Restricted Access Treatment
- Figure 5.5: MVRN URA Key Intersections
- Figure 5.6: Turn Warrants Assessment Locations
- Figure 5.7: Proponent's Proposed Central Boulevard Alignment
- Figure 6.1: 'Interim' Route of Bus Operations
- Figure 6.2: 'Ultimate' Route of Bus Operations
- Figure 6.3: Bus Capable Roads
- Figure 6.4: Open Space Masterplan
- Figure 6.5: Proposed Shared Use Network
- Figure 6.6: Proposed Shared Use Network Without Road Typologies

#### **Appendices**

- Appendix A: SIDRA Output Summary Sheets
- Appendix B: Detailed SIDRA Assessment Outputs
- Appendix C: Turn Warrants Assessment



# **1.** INTRODUCTION

# 1.1 Background

Bitzios Consulting (Bitzios) has been engaged by Shoalhaven City Council (Council) to undertake a traffic study for the proposed Moss Vale Road North (MVRN) Urban Release Area (URA), located in Cambewarra, New South Wales (NSW).

The proposed MVRN URA and the surrounding area is shown in Figure 1.1.



SOURCE: Nearmap

#### Figure 1.1: MRVN URA Location

## 1.2 Context

This report forms the primary document for the traffic study focusing on the internal design of the URA. Bitzios has also separately competed an external impacts report (*P4627.007R Moss Vale Road North URA Traffic Study External Analysis Report, dated 07/07/2020*).

Both studies have adopted the latest May 2020 TRACKS model for the purpose of extracting forecast traffic volumes to assess the impacts. The May 2020 TRACKS model incorporates the road layout and lot yields of the proposed development, as well as expected changes to other URAs and the local road network.

The proponents have proposed a total of 2,515 dwellings for the MVRN URA. As a result, a traffic study is undertaken for the purpose of informing and developing the Development Control Plan (DCP) for the MVRN URA. The traffic study is to be in accordance to relevant TfNSW guidelines as well as other relevant Australian Standards, Austroads and Council guidelines.



## 1.3 Scope

The scope for assessment is detailed below:

- Review of all documentation relevant to the traffic study and the development of the subject MVRN URA
- Review of the road typology and proposed intersection arrangement, including road typology, intersection layouts and intersection capacity for forecast traffic volumes
- Review of active transport arrangements, including pedestrian and cycle path placement and forecast volumes
- Review of public transport arrangements, including development of optimal bus routes and bus stop locations
- Extract relevant intersection volumes from the latest May 2020 Shoalhaven-Kiama TRACKS models, as updated for the purpose of these impact assessments
- Development of SIDRA intersection models for the proposed internal URA intersection layout with revised May 2020 TRACKS traffic volumes
- Summarise the findings, including year of failure, failure mechanisms and potential improvements to the layout of the concept design.



# 2. Key Relevant Guidelines & Standards

## 2.1 Shoalhaven Development Control Plan – Draft Moss Vale Road North Urban Release Area

This draft document provides detailed requirements to facilitate development of land in the MVRN URA and is heavily based on the MVRS URA DCP detailed in Section 2.1. The document mainly guides the design and typology of the development's roads, as well as demonstrate a staging plan to form the public and active transport routes within the URA. Sections 5 and 6 have been shaped by the principles outlined in the Shoalhaven DCP – Draft MVRN URA.

# 2.2 Shoalhaven Development Control Plan NB3 – Moss Vale Road South Urban Release Area

This document details the requirements to facilitate the development of land in the MVRS URA. The document is in accordance with the provisions stipulated in TfNSW' *Shoalhaven Local Environmental Plan* (LEP), *Part 6* (2014), detailed further in Section 2.8. The objectives of the MVRN URA also closely follow those stipulated in the MVRS DCP, as well as each relevant performance criterion and acceptable solution. Sections 5 and 6 have been shaped by the principles outlined in the Shoalhaven DCP NB3 – MVRS URA.

# 2.3 Nowra-Bomaderry Structure Plan (2006)

The document comprises of a strategic direction and background report of the Nowra-Bomaderry region. Particularly, it provides transport objectives and principles that apply to the development as part of this structure plan. This traffic study of the MVRN URA follows these transport objectives and outcomes stipulated in the Nowra-Bomaderry Structure Plan.

# 2.4 Moss Vale Road North Urban Release Area Transport Report

This document details a transportation analysis based on the MVRN Draft DCP. It outlines each strategic transport planning principle detailed within the DCP and summarises the outcomes involved. The categories are separated into principles, transport networks, width of carriageway, layout, speed management and elements of street reserve.

Importantly, the document outlines the required key traffic items to address and the elements of a development proposal within the Nowra-Bomaderry region to consider.

# 2.5 Shoalhaven Development Control Plan – Chapter G11: Subdivision of Land

This document outlines controls and guidelines for the subdivision of land to all developments of Shoalhaven. Sections 5 and 6 utilise guidelines stipulated in the Shoalhaven DCP – Chapter G11: Subdivision of Land.

## 2.6 Transport for New South Wales – Guidelines for Public Transport Capable Infrastructure in Greenfield Sites

This document outlines a guideline to delivering public transport capable road design within Greenfield sites. Particularly, the MVRN URA development follows the strategic principles, planning model and road infrastructure requirements stipulated within this document. The principles outlined in the document components shape the internal road network, internal intersections, public transport and active transport sections of the development.



# 2.7 Australian Standards AS2890.5 Parking Facilities Part 5: On-street Parking (2020)

This document details the minimum requirements and recommendations stipulated by Australian Standards for the provision of on-street parking. The requirements outlined in AS2890.5 provide the design requirements utilised for on-street parking within the road typology of the development. The design of on-street car parking within the cross section of each typology is detailed in Section 5.6.3.

# 2.8 Shoalhaven Local Environment Plan

This document provides overview of the Shoalhaven local environmental planning provisions of land in accordance with relevant standards. Importantly, *Part 6 Urban Release Areas* stipulates the satisfactory arrangements required before the subdivision of land in an URA.

# 2.9 Austroads Guidelines

## 2.9.1 Austroads Guide to Road Design

These documents provide guidance for designers to develop safe and coordinated road alignments that cater for traffic demands at the chosen speed. Traffic outcomes stipulated in these guidelines involve road cross-sections, signalised and unsignalised intersections, roundabouts and active transport considerations. The particular documents utilised for this internal study are:

- Guide to Road Design Part 3: Geometric Design
- Guide to Road Design Part 4A: Unsignalised and Signalised Intersections
- Guide to Road Design Part 4B: Roundabouts
- Guide to Road Design Part 6A: Paths for Walking and Cycling

## 2.9.2 Austroads Guide to Traffic Management

These documents aim to provide guidance to management traffic outcomes in accordance to typical managing, planning and design principles used nationally. Specific traffic outcomes stipulated in these guidelines involve intersections, interchanges, crossings and local streets. The particular documents utilised for this internal study are:

- Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings Management
- Guide to Traffic Management Part 8: Local Street Management

# 2.10 A National Resource Document for Residential Development (AMCORD)

This document details the planning, design assessment and implementation schemes in development residential developments. The guidelines stipulated are aimed to meet the needs of state government, local authorities and relevant housing / development industries.

# 2.11 TfNSW Guidelines

TfNSW documents provide guidance to promoting a standard framework towards proposed projects, programs and initiatives within the NSW transport portfolio. Traffic guidelines used for the purpose of this internal study are:

- TfNSW Economic Parameter Values
- Guidelines for Public Transport Capable Infrastructure in Greenfield Sites
- Traffic Modelling Guidelines



# 3. PROPOSED DEVELOPMENT

# 3.1 Development Details

The proposed development is primarily a residential subdivision consisting of residential lots, retail centre, business park and open space / environmental zones. The URA is approximately 266 hectares in area and zoned accordingly to the specific land uses within the development. Figure 3.1 and Table 3.1 outlines the proposed zones and land use of the development.



SOURCE: Shoalhaven City Council

Figure 3.1: Proposed Development Zoning



| Development Component     | Zone ID                                                      |
|---------------------------|--------------------------------------------------------------|
| Residential               | R1 General Residential                                       |
| Retail / Community Centre | B1 Neighbourhood Centre<br>B2 Local Centre                   |
| Business                  | B7 Business Park                                             |
| Open Space                | RE1 Public Open Space                                        |
| Environmental Zones       | E2 Environmental Conservation<br>E3 Environmental Management |

#### Table 3.1: Proposed Development Land Zoning

Council have provided an indicative plan of staging based on the proponent's layout plan for the proposed development. The initial stages (i.e. 1 to 6) are expected to be complete by year 2026 and range to the year 2041, defined as Stage 1 to Stage 20. Council's proposed indicative staging plan is shown in Figure 3.2.





Figure 3.2: Council's Indicative Staging Plan



# 4. EXTERNAL TRAFFIC ANALYSIS

# 4.1 Introduction

Bitzios were engaged by Council to undertake an external traffic analysis for the proposed MVRN URA. The external traffic analysis forms Phase A of the MVRN URA Traffic Study undertaken by Bitzios.

# 4.2 SIDRA Development

Future year modelling scenarios were based on forecast traffic volumes from the Shoalhaven-Kiama TRACKS model, developed by Council and Stantec. The TRACKS model forecasts traffic conditions from 2021 to 2041 in both AAST and 100<sup>th</sup> Highest Hour (100HH) scenarios. The 2041 scenarios are not exact 2041 traffic volumes, but rather an ultimate development scenario including full occupancy of all other planned URA's including Meroo Meadow.

## 4.3 Moss Vale Road / Bells Lane / Far North Collector Road Intersection

The modified second iteration intersection proposed is expected to cater for forecast traffic volumes until the year 2036. The modified ultimate intersection form is expected to cater for forecast traffic volumes until the year 2041 in the AAST scenario.

The results indicate that the turn pockets associated with the MVR / Bells Lane / Far North Collector Road (FNCR) intersection (in particular the right turn out of FNCR and the left turn out of Bells Lane) will need to be extended by 20m (FNCR right turn) and 3m (Bells Lane left turn).

While the intersection saturation capacity is not exceeded in the ultimate year, intersection operations could be further improved by adding additional short lanes on approach and on exit, such as an additional right-turn short lane on MVR south eastern approach and short lane on Bells Lane exiting the intersection. Based on the results from the second iteration scenario, it is recommended that the intersection be upgraded to its ultimate form by the year 2036, including addressing the turn pocket extensions as recommended in the external impacts report. The required intersection form and associated turn pocket extensions are being addressed as part of the Far North Collector Road project and there will be no additional upgrades required as part of the planning for the MVRN URA.

## 4.4 Moss Vale Road / Moss Vale Road South URA Access / Central Boulevard

The intersection remains within acceptable limits of DOS, delay times and LOS outcomes for both AAST and 100HH models.

The proposed layout is evidently efficient in all scenarios proposed in the SIDRA assessment. Noting the MVR north-western approach experiences large peak hour volumes, the results shown conclude a single lane roundabout approach is sufficient for the application of this intersection. The SIDRA results highlight the short 95th percentile back of queue lengths indicating that a single lane approach is deemed sufficient on all approaches.

The required single lane roundabout intersection form and associated works are being addressed as part of the HAF project, and there will be no additional upgrades as part of the planning for the MVRN URA.



# 4.5 Pestells Lane Interchange & Boxsells Lane Intersection

Pestells Lane interchange remains within acceptable limits of DOS, delay times and LOS outcomes for both AAST and 100HH models. Boxsells Lane intersection remains within acceptable limits of DOS, delay times and LOS outcomes for both AAST and 100HH models until year 2031.

The occurrence of failure at the Boxsells Lane intersection is addressed in future by proposing to close the median break and deny the subject right-turn movements by physical restriction. It is noted these movements could be redirected in future to the adjacent grade separated intersections of the Pestells Lane Interchange to the south and the Devitts Lane / Morschels Lane Interchange to the north, which can adequately accommodate the reassigned traffic.

This is discussed in detail in the external impacts report. Notwithstanding, the proposed intersection treatments being constructed as part of the current Princes Highway upgrade (Berry to Bomaderry) works will be sufficient to accommodate the MVRN URA, and no additional upgrades are recommended as part of the planning for the MVRN URA.

# 4.6 External Analysis Summary

The key findings of the external traffic analysis for the proposed intersections are as follows:

- The results indicate that the turn pockets associated with the MVR / Bells Lane / FNCR intersection will need to be extended by 20m along the FNCR right turn and 3m along the Bells Lane left turn. These extensions are an amendment to the 'ultimate form' layout of the intersection and not necessary to the 'second iteration' form
- The modified second iteration intersection proposed is expected to cater for forecast traffic volumes until the year 2036. The strategy of building the 'second iteration' up front but with land reservation to accommodate the 'ultimate form' is still supported as the preferred approach, noting the required extension of turn pockets
- The modified ultimate intersection form is expected to cater for forecast traffic volumes until the year 2041 in the AAST scenario. While queue lengths are exceeded in the 2041 100HH scenario, DOS limits are contained at capacity
- A single circulating lane and single lane approaches are deemed sufficient for the application of the MVR / MVRS URA Access / Central Boulevard roundabout
- 95<sup>th</sup> percentile back of queue lengths extracted from the SIDRA modelling are significantly less than the distance of the MVR western and eastern approaches
- The capacity of the URA roundabout (Central Boulevard) intersection remains within limits for all capacity mechanisms in all scenarios
- The capacity of the Princes Highway / Boxsells Lane intersection remains within acceptable limits for majority of capacity mechanisms from years 2021 to 2026. The right turn from Princes Highway northern approach is noted to fail in year 2031 100HH PM peak period. The Median Storage eastern approach fails by year 2036 in both AAST and 100HH scenarios (the very final stages of the MRVN URA), and Median Storage western approach fails by 2041 100HH PM peak period. This is a result of the forecast traffic volumes on the Princes Highway and traffic turning into Boxsells Lane from the Princes Highway. Notwithstanding, this occurrence would be easily addressed in future by proposing to close the median break and deny the subject right-turn movements by physical restriction
- The proposed layout and conditions are deemed sufficient for the application of the approved Pestells Lane Interchange and the approved intersection treatment for the Princes Highway / Boxsells Lane intersection
- This external impact analysis, following refinement of the Shoalhaven-Kiama TRACKS models to reflect the proponents proposed 2,515 dwellings in MRVN URA, indicates that this level of development could be accommodated by the surrounding state road network.



Whilst the Abernethy's Lane connection is not 'required' to accommodate the MVRN URA, its role as a possible future connection needs to be preserved with all aspects of planning of the MVRN. This includes ensuring any built works along Abernethy's Lane are at collector road standard to protect this option, which may be triggered in future by either the future Meroo Meadow URA, or as part of the local access solutions associated with the future design of the Western Bypass of Nowra / Bomaderry.



# 5. INTERNAL ROAD NETWORK

# 5.1 Overview

The MVRN Draft DCP includes the proponents proposed internal road network layout and typology plan for the development and is detailed in Figure 5.1. Collector roads are shown along Central Boulevard, Village Boulevard, Pestells Lane and Bells Lane, as well as local, green and retail streets provided throughout. A 3-5m central median is proposed along Central Boulevard and partially along Bells Lane within the carriageway.

Council provided an amended sketch based on the proponent's proposed road network layout plan, as detailed in Figure 5.2. Council proposed extensions to the collector road network and provided advice related to indicative roundabout and access locations throughout the development.

The proponent's road layout, as amended by Council was the network incorporated into the updated May 2020 TRACKS models. As part of the model development and assignment to form the May 2020 TRACKS, some further network refinements were undertaken to resolve traffic management issues within the network, as recommended by Stantec.

# 5.2 Proponent's Proposed Road Network Layout and Typologies

The internal road network and typology proposed by the proponent is demonstrated within the MVRN Draft DCP and provided in Figure 5.1.





SOURCE: MVRN Draft DCP

#### Figure 5.1: Proponent's Road Typology Plan

## 5.3 Council Review of Proponent's Proposed Road Network Layout

As part of the scope to develop the May 2020 TRACKS models, Council reviewed the proponent's proposed internal road network layout and typologies and identified a number of amendments. The amendments were subsequently coded into the May 2020 TRACKS models.

Again, as part of the model development and assignment to form the May 2020 TRACKS models, some further refinements were undertaken to resolve traffic management issues within the network, as recommended by Stantec.



# 5.4 Forecast Traffic Volumes

## 5.4.1 Forecast Peak Hour Traffic Volumes

The assessment of the proposed internal intersections relied upon forecast AM and PM peak hour traffic volumes extracted from the 2041 TRACKS AAST (Average Annual School Traffic) models as they represent the ultimate development scenario.

## 5.4.2 Forecast Daily Traffic Volumes

The assessment of the proposed road typologies in-part relied upon the analysis of forecast daily traffic volumes. The forecast traffic volumes were extracted from the 2041 TRACKS models. Given the TRACKS models only provide one-hour peak volumes, an expansion factor was required to convert the one-hour peak volumes to daily volumes.

Existing traffic volumes on collector roads and streets in the Nowra area were assessed by Council to determine an expansion factor which could be used to convert the forecast one-hour peak volumes into forecast daily traffic volumes. Council determined an expansion factor of 11.765 was found to represent roads such as Illaroo Road. This rate is generally consistent with the expansion factor of 11.5 for rural roads as specified in TfNSW's *Economic Parameter Values (September 2019)*.

# 5.5 Cross Section Components

## 5.5.1 Travel Lanes

Austroads *Guide to Road Design Part 3: Geometric Design* notes that it is current Australia (and New Zealand) practice to provide standard traffic lane widths of 3.5m. This is because 3.5m allows for large vehicles to pass or overtake, without either vehicle having to move sideways towards the outer edge of the lane. However, it notes that traffic lane widths can be reduced to 3.0m - 3.4m on low speed roads with low truck volumes.

TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites* requires the traffic lanes widths to allow a bus service to operate safely and efficiently as follows:

- Minimum 3.5m standard traffic lane widths are desirable on all road types
- Minimum 3.5m traffic lane width for a 60km zone
- Minimum 3.2m traffic lane width for a 50km zone, provided there is no centre median.

## 5.5.2 Parking Lanes

Australian Standard *AS2890.5 Parking Facilities Part 5: On-street parking* (2020) specifies widths for parallel on-street parking spaces for cars and light commercial vehicles as provided in Table 5.1.

| Speed Limit (km/h) | Space Width Range (m)             | Safety Buffer (m) | Total Width (m) |  |  |
|--------------------|-----------------------------------|-------------------|-----------------|--|--|
| 50 or less         | 2.0 to 2.3                        | 0                 | 2.0 to 2.3      |  |  |
| 60                 | 2.0 to 2.3                        | 0.5               | 2.5 to 2.8      |  |  |
| 70                 | 2.0 to 2.3                        | 1.5               | 3.5 to 3.8      |  |  |
| 80 or more         | On-street parking not recommended |                   |                 |  |  |

| Table 5.1: | Australian | Standards | Parallel | Parking | Space | Width - | Cars and | Light Vehicles |
|------------|------------|-----------|----------|---------|-------|---------|----------|----------------|
|------------|------------|-----------|----------|---------|-------|---------|----------|----------------|

TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites* requires the kerb side lanes widths to allow a bus service to operate safely and efficiently as follows:

 Minimum width of 3.5m where the kerb side lane operates as a travel lane, to allow buses to use the lane without passing over drainage structures



- Minimum width of 3.0m where the kerb side lane operates as a parking lane, to allow for bus stops and allow the bus to move out of the through traffic lane
- Minimum width of 3.5m where the kerb side lane operates as both a travel lane and a parking lane.

### 5.5.3 Offset

Austroads *Guide to Road Design Part 6A: Paths for Walking and Cycling* specifies a minimum horizontal clearance of 1.0m between the edge of pathways and vertical obstructions. As such, the offset should be provided at a minimum of width 1.0m from the adjacent property boundary.

## 5.5.4 Pathway

Austroads *Guide to Road Design Part 6A: Paths for Walking and Cycling* details the dimensions shown in Table 5.2

Table 5.2: Austroads Guide to Road Design – Shared Path Widths

|                                    | Suggested path width | Suggested path width (m) |                   |  |  |  |  |  |  |
|------------------------------------|----------------------|--------------------------|-------------------|--|--|--|--|--|--|
|                                    | Local access path    | Regional path            | Recreational path |  |  |  |  |  |  |
| Desirable minimum width            | 2.5                  | 3.0                      | 3.5               |  |  |  |  |  |  |
| Minimum width –<br>typical maximum | 2.0-3.0              | 2.5 – 4.0                | 3.0 – 4.0         |  |  |  |  |  |  |

Council's DCP Chapter G11: Subdivision of Land notes the following with regards to pathways:

- A36.2 Footpaths are provided on one side of streets with traffic volumes over 2,000 vehicles per day (vpd) as pedestrians can share the roadway with vehicles in a low speed environment with traffic volumes less than 2,000vpd
- A38.2 Footpaths are to be 1.2m wide
- A38.3 Footpaths are widened to a minimum of 1.4m in the vicinity of meeting points, schools, shops and other activity centres.
- A39.1 Dedicated cycle paths are shown to have been considered and planned for where traffic volumes reach 5,000vpd

Council's *Engineering Design Specification D8 Cycleway and Pathway Design* details the dimensions provided in Table 5.3.

| Table 5.3: | Council Cycleway | and Pathway Desigr | n – Minimum Design Standards |
|------------|------------------|--------------------|------------------------------|
|------------|------------------|--------------------|------------------------------|

|            | Cycleway | Pathway | Dual Use Pathway |
|------------|----------|---------|------------------|
| Path Width | 2.0m     | 1.2m    | 2.0m             |

In consideration of the shared use pathway (SUP) widths specified in Austroads and Council's *Engineering Design Specification*, 2.0m wide SUP should be provided as a minimum. An increase in width to 2.5-3.0m should be considered through the riparian corridors to support recreational use.

## 5.5.5 Planting

From a traffic engineering and transport planning perspective, the width of the planting component within the verge is generally dictated by the width of the proposed pathway and offsets between any vegetation and adjacent carriageway/pathway.



## 5.5.6 Median

TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites* notes that medians should not be included on roads that may be used by buses as it allows for buses to continue providing services in the event of vehicle being inappropriately parking. If a median is necessary (i.e. to physically restrict turn movements), they should be designed as bus mountable. Accordingly, and to keep road reservation widths from being excessive, medians are not recommended to be provided along the URA's collector road network.

# 5.6 Road Typology Assessment

## 5.6.1 Road Typology Assessment Mechanism

In the absence of any national or state guidelines (e.g. Austroads, TfNSW) for determining daily capacity of road typologies, a review of Council's and surrounding local government area's (LGAs) road cross sections was undertaken.

The road typology of the development is defined based on the number of vehicles per day, shown in Table 5.4.

| Road Type               | Control volume in vehicles per day (v) |  |  |  |  |
|-------------------------|----------------------------------------|--|--|--|--|
| Collector Road – Tier 1 | 17,500 ≤ v ≤ 35,000 <sup>1</sup>       |  |  |  |  |
| Collector Road – Tier 2 | v ≤ 17,500                             |  |  |  |  |
| Local Street            | v ≤ 3,500                              |  |  |  |  |
| Riparian Street         | v ≤ 3,500                              |  |  |  |  |
| Access Street – Tier 1  | 350 ≤ v ≤ 700                          |  |  |  |  |
| Access Street – Tier 2  | v ≤ 350                                |  |  |  |  |
|                         |                                        |  |  |  |  |

#### Table 5.4: Control Volumes for Road Typology

Note: If collector road tier 1 is converted to a 4-lane cross section in the future, vehicle capacity is significantly increased

## 5.6.2 Council's Proposed Road Typology

Council's proposed road typology based on the proponent's layout is shown in Figure 5.2.





# Figure 5.2: Proponent's Road Typology with Council's Original Amendments (Prior to the May 2020 TRACKS Update)

## 5.6.3 Proposed Road Cross Sections

While the road typology map shows two types of roads, the proponent has provided 12 potential road cross sections in the MVRN Draft DCP.



#### 5.6.3.1 Collector Road

The proponent's cross section for a collector road with and without a median is detailed in Table 5.5 and Table 5.6.

| Verge  |      |       | Carriageway |      |        |      |         | Verge |        | Total  |         |
|--------|------|-------|-------------|------|--------|------|---------|-------|--------|--------|---------|
| Offset | Path | Plant | Parking     | Lane | Median | Lane | Parking | Plant | Path   | Offset | Reserve |
| 0.5    | 2.5  | 1.3   | 2.1         | 4.5  | 3 – 5+ | 4.5  | 2.1     | 2.3   | 1.5    | 0.5    | 24.9ml  |
|        | 4.3  |       | 16.2+       |      |        |      | 4.3     |       | 24.8m+ |        |         |

 Table 5.5:
 Proposed Road Cross Section – Collector Road with Median

| Table 5.6: Proposed Road Cross Section – Co | ollector Road without Median |
|---------------------------------------------|------------------------------|
|---------------------------------------------|------------------------------|

| Verge  |      |       | Carriageway |                |     |     | Verge |        |         |  |
|--------|------|-------|-------------|----------------|-----|-----|-------|--------|---------|--|
| Offset | Path | Plant | Parking     | Parking Lane P |     |     | Path  | Offset | Reserve |  |
| 0.5    | 2.5  | 1.3   | 2.1         | 9              | 2.1 | 2.3 | 1.5   | 0.5    | 21.8m   |  |
|        | 4.3  |       |             | 13.2           |     |     | 4.3   |        | 21.0111 |  |

The recommended cross sections for collector roads are detailed in Table 5.7 and Table 5.8.

#### Table 5.7: Recommended Road Cross Section – Collector Road – Tier 1

|           | Verge     |       |                        | Carriageway |       | Total |           |           |       |
|-----------|-----------|-------|------------------------|-------------|-------|-------|-----------|-----------|-------|
| Offset    | Path      | Plant | Parking Lane Parking I |             | Plant | Path  | Offset    | Reserve   |       |
| 1.0 – 1.5 | 1.5 – 2.0 | 1.5   | 3.5                    | 7           | 3.5   | 1.5   | 1.5 – 2.0 | 1.0 – 1.5 | 22.0m |
|           | 4.5       |       |                        | 14          |       |       | 4.5       |           | 23.0m |

#### Table 5.8: Recommended Road Cross Section – Collector Road – Tier 2

|           | Verge           |     |         | Carriageway |         | Verge |             | Total     |         |
|-----------|-----------------|-----|---------|-------------|---------|-------|-------------|-----------|---------|
| Offset    | iset Path Plant |     | Parking | Lane        | Parking | Plant | Path Offset |           | Reserve |
| 1.0 – 1.5 | 1.5 – 2.0       | 1.5 | 3       | 7           | 3       | 1.5   | 1.5 – 2.0   | 1.0 – 1.5 | 22.0m   |
|           | 4.5             |     |         | 13          |         |       | 4.5         |           | 22.0m   |

As shown in Table 5.7 and Table 5.8, two different cross sections have been recommended for the collector road typology. The Collector Road – Tier 1 cross section provides wider parking lanes to allow for a future upgrade to a four-lane cross section with minimal to no civil works. It has been developed for use on key north-south and east-roads through the development that will have immediate or future connections to the existing road network or future URAs (e.g. Meroo Meadow). The recommended Collector Road – Tier 2 cross section includes 3m wide parking lanes in consideration of the minimum width for kerbside bus stops.

The traffic lanes for both collector road cross sections are recommended at 3.5m, which is consistent with Austroads and TfNSW guides for a road of this hierarchy and speed.

The collector road cross sections are recommended to exclude a median. Bus routes are to be located on the collector roads and therefore it is suitable to provide a wider road lane rather than a median.

A minimum offset width of 1m is recommended as per Austroads guides, which can cater for a 2.0m wide SUP. Where is 1.5m wide pathway is provided, the offset is increased to 1.5m. It is recommended that a 2.0m wide SUP is provided within at least one verge, with a 1.5m wide pathway provided on the other verge.



#### 5.6.3.2 Local and Retail Streets

The proponent's proposed cross section for local and retail streets are detailed from Table 5.9 to Table 5.12.

| Verge  |      |       | Carriageway |             |     |       | Verge | Total  |             |
|--------|------|-------|-------------|-------------|-----|-------|-------|--------|-------------|
| Offset | Path | Plant | Parking     | arking Lane |     | Plant | Path  | Offset | Reserve     |
| 0.5    | 2.5  | 1.3   | 2.1         | 5.5 – 7     | 2.1 | 2.3   | 1.5   | 0.5    | 18.3 – 19.8 |
|        | 4.3  |       |             | 9.7 – 11.2  |     |       | 4.3   |        | 10.3 - 19.8 |

#### Table 5.9: Proposed Road Cross Section – Local Street

#### Table 5.10: Proposed Road Cross Section – Rural Edge – Local Street

|        | Verge |       | Carriage |         |            | Total |        |         |
|--------|-------|-------|----------|---------|------------|-------|--------|---------|
| Offset | Path  | Plant | Lane     | Parking | Plant Path |       | Offset | Reserve |
| 0.5    | 2.5   | 1.3   | 5.5      | 2.1     | 2.3        | 1.5   | 0.5    | 16.2m   |
|        | 4.3   |       | 7.6      |         | 10.2111    |       |        |         |

#### Table 5.11: Proposed Road Cross Section – Retail Parking Streets

|        | Verge |       |                                        | Carriageway |        |         | Verge |     |     |  |
|--------|-------|-------|----------------------------------------|-------------|--------|---------|-------|-----|-----|--|
| Offset | Path  | Plant | Parking Lane Parking Plant Path Offset |             | Offset | Reserve |       |     |     |  |
| 0.5    | 1.5   | 2     | 5.5                                    | 9           | 5.5    | 2       | 1.5   | 0.5 | 29~ |  |
|        | 4     |       |                                        | 20          |        |         | 4     |     | 28m |  |

#### Table 5.12: Proposed Road Cross Section – Half Local Street (Construction Boundaries)

|        |      | Verge   |       |      |        |         |
|--------|------|---------|-------|------|--------|---------|
| Offset | Lane | Parking | Plant | Path | Offset | Reserve |
| 1      | 3.5  | 2.1     | 2.3   | 1.5  | 0.5    | 10.9m   |
|        | 6.5  |         | 4.3   |      | 10.900 |         |

The recommended cross section for the local and retail street is detailed in Table 5.13.

#### Table 5.13: Recommended Road Cross Section – Local and Retail Street

|        | Verge        |       |         | Carriageway            |     |       | Verge        |        |                 |
|--------|--------------|-------|---------|------------------------|-----|-------|--------------|--------|-----------------|
| Offset | Path         | Plant | Parking | Parking Lane Parking I |     | Plant | Path         | Offset | Reserve         |
| 1      | 1.5 –<br>1.8 | 2     | 2.3     | 9                      | 2.3 | 2     | 1.5 –<br>1.8 | 1      | 20.6 –<br>21.2m |
|        | 4.5 - 4.8    |       |         | 11.6                   |     |       | 4.5 - 4.8    |        |                 |

The proposed local and retail street cross sections are recommended as one defined cross section.

The key recommendation for the Retail Street is to consider parallel on-street parking rather than angled on-street parking. This considers the traffic volumes expected in the village centre as well as the excessive road reserve width required under AS2890.5. Noting this, the preference would be for parking demand within the village centre to be catered for by off-street (private and public) parking provisions.

The parking lane within the carriageway is provided at 2.3m for parallel parking in accordance to AS2890.5. It is recommended to line mark individual parking spaces along Retail Streets as per AS2890.5.

The total width of the cross section, particularly retail streets, considers potential higher traffic volumes (i.e. 200 – 800 veh/h) to accommodate a wider range of future commercial and retail



developments. Currently, tenancies along Village Boulevard are not confirmed as part of the central zone of the URA.

A minimum 1.8m pathway is recommended for retail streets in accordance to Council's DCP *Chapter G17 Business, Commercial and retail Activities*, however full width paving between the road and road reserve boundaries with appropriate landscaped/streetscape treatments may also be considered within and around the retail centre.

#### 5.6.3.3 Riparian Street

The proponent's cross section for riparian streets are detailed from Table 5.14 to Table 5.18

 Table 5.14:
 Proposed Road Cross Section – Riparian Edge – Local Street

| Verge | Carria |         |       | Total |        |         |  |
|-------|--------|---------|-------|-------|--------|---------|--|
| Plant | Lane   | Parking | Plant | Path  | Offset | Reserve |  |
| 1     | 5.5    | 2.1     | 2.3   | 1.5   | 0.5    | 10.0m   |  |
| 1     | -      |         |       | 12.9m |        |         |  |

| Table 5.15: | Proposed Road Cross Section – Green Street Option 1 |
|-------------|-----------------------------------------------------|
|-------------|-----------------------------------------------------|

|        | Verge             |     | Carria |      | Total   |      |        |         |
|--------|-------------------|-----|--------|------|---------|------|--------|---------|
| Offset | Offset Path Plant |     |        | Lane | Plant   | Path | Offset | Reserve |
| 0.5    | 2.5               | 1.3 | 2.1    | 5.5  | 2.3     | 1.5  | 0.5    | 16.2m   |
|        | 4.3               |     | 7      |      | 10.2111 |      |        |         |

#### Table 5.16: Proposed Road Cross Section – Green Street Option 2

|        | Verge |       |         | Carriageway          |     |     | Verge |        |         |  |
|--------|-------|-------|---------|----------------------|-----|-----|-------|--------|---------|--|
| Offset | Path  | Plant | Parking | Parking Lane Parking |     |     | Path  | Offset | Reserve |  |
| 0.5    | 2.5   | 1.3   | 2.1     | 3.5                  | 2.1 | 2.3 | 1.5   | 0.5    | 10.0m   |  |
|        | 4.3   |       |         | 7.7                  |     |     | 4.3   |        | 16.3m   |  |

#### Table 5.17: Proposed Road Cross Section – Rural Edge – Green Street

|        | Verge |       | Carriageway Verge |         | Carriageway Verge |      |        | Total   |
|--------|-------|-------|-------------------|---------|-------------------|------|--------|---------|
| Offset | Path  | Plant | Lane              | Parking | Plant             | Path | Offset | Reserve |
| 0.5    | 2.5   | 1.3   | 4                 | 2.1     | 2.3               | 1.5  | 0.5    | 14.7m   |
|        | 4.3   |       | 6.1               |         | 4.3               |      |        | 14.711  |

#### Table 5.18: Proposed Road Cross Section – Riparian Edge – Green Street

| Verge | Carriageway |         | Verge |      |        | Total   |
|-------|-------------|---------|-------|------|--------|---------|
| Plant | Lane        | Parking | Plant | Path | Offset | Reserve |
| 1     | 4           | 2.1     | 2.3   | 1.5  | 0.5    | 11.4m   |
| 1     | 6.1         |         | 4.3   |      |        | 11.4111 |

The recommended cross section for a Riparian Street is detailed in Table 5.19.



| Verge | Carriageway |         | Verge |      |        | Total   |
|-------|-------------|---------|-------|------|--------|---------|
| Plant | Lane        | Parking | Plant | Path | Offset | Reserve |
| 2     | 7           | 2.3     | 2     | 1.5  | 1      | 1E 9m   |
| 2     | 9.3         |         | 4.5   |      |        | 15.8m   |

#### Table 5.19: Recommended Cross Section – Riparian Street

A SUP is considered where the verge is 2m wide of the cross section, and wider shared user paths (2.5-3m) should be considered for the riparian zones as recommended in Section 5.5.4. This side of the verge is also proposed within the riparian zone and as a result, the SUP is to be located adjacent to the road cross section. The 4.5m verge is located along the opposing side of the cross section.

The parking lane within the carriageway is provided at 2.3m for parallel parking in accordance to AS2890.5.

### 5.6.3.4 Rear Laneway

The proponent's cross section for the Rear Laneway is detailed in Table 5.20.

 Table 5.20:
 Proposed Road Cross Section – Rear Laneway

| Verge | Carriageway | Verge  | Total   |  |
|-------|-------------|--------|---------|--|
| Plant | Lane        | Offset | Reserve |  |
| 0.5   | 5           | 0.5    | 6m      |  |

The recommended cross section for the Rear Laneway is detailed in Table 5.21.

#### Table 5.21: Recommended Cross Section – Rear Laneway

| Verge | Carriageway | Verge  | Total   |
|-------|-------------|--------|---------|
| Plant | Lane        | Offset | Reserve |
| 2.5   | 6           | 2.5    | 11m     |

As shown in Table 5.21, verge widths within the Rear Laneway cross section include planting along one verge and a 2.5m offset from the property boundary within the other verge. The verge width has been recommended based on pedestrian sight triangle dimensions specified in Australian Standard *AS2890.1 Parking Facilities Part 1: Off-street car parking* (2004). Discussions with Council's officers identified the requirement for wider verges to avoid services being located beneath the carriageway.

A 6m wide carriageway is recommended to permit two-way traffic flow during waste collection or in case of a vehicle breakdown.

## 5.6.3.5 Access Street

The recommended cross sections for the access street typology is detailed in Table 5.22 and Table 5.23.

#### Table 5.22: Recommended Cross Section – Access Street – Tier 1

|        | Verge |       | Carriageway Verge |      | Total   |       |      |        |         |
|--------|-------|-------|-------------------|------|---------|-------|------|--------|---------|
| Offset | Path  | Plant | Parking           | Lane | Parking | Plant | Path | Offset | Reserve |
| 1      | 1.5   | 1     | 2                 | 5.5  | 2       | 1     | 1.5  | 1      | 16 Em   |
|        | 3.5   |       |                   | 9.5  |         |       | 3.5  |        | 16.5m   |



|        | Verge Carriageway |           | Verge |           |           | Total  |         |
|--------|-------------------|-----------|-------|-----------|-----------|--------|---------|
| Offset | Path              | Plant     | Lane  | Plant     | Path      | Offset | Reserve |
| 1      | 1.5 – 2.0         | 1.5 – 2.0 | 7.5   | 1.5 – 2.0 | 1.5 – 2.0 | 1      | 16 Em   |
|        | 4.5               |           | 7.5   |           | 4.5       |        | 16.5m   |

 Table 5.23:
 Recommended Cross Section – Access Street – Tier 2

As shown in Table 5.22 and Table 5.23, two different cross sections have been recommended for the access street typology. The Access Street – Tier 1 cross section is recommended to provide a wider carriageway to support higher traffic volumes, determined by forecast daily traffic volumes. The Access Street – Tier 2 cross section is recommended for lower traffic volumes and as a result, lesser carriageway width and greater verge width.

The Access Street – Tier 1 cross section is recommended to provide 2m wide on-street car parking in accordance with AS2890.5.

## 5.6.4 Corner Truncations

Corner truncation (splay) requirements in Council's *Engineering Design Specifications D1 (1999)* have been considered. Based on the review, and in consideration of the proposed road typologies, the recommended corner truncations are detailed in Table 5.24.

#### Table 5.24: Recommended Design of Corner Truncations

| Road 1             | Road 2             | Geometric Consideration (m) |
|--------------------|--------------------|-----------------------------|
| Collector Road     | Any road           | 4 x 4                       |
| Non-collector Road | Non-collector Road | 3 x 3                       |

The dimensions provided in Table 5.24 are specific to priority-controlled intersections within the URA. They consider safe intersection sight distance (SISD) principles outlined in Austroads *Guide to Road Design Part 4a – Unsignalised and Signalised Intersections.* 

For roundabouts, the provision of corner truncations should be determined in accordance with the processes outlined in Austroads *Guide to Road Design Part 4B Roundabouts – Section 3*. This process should be undertaken for each roundabout on a separate basis, with the dimensions in Table 5.24 representing the minimum corner truncations (corner boundary splays) to be achieved, subject to roundabout design requirements which may require further boundary adjustments.

## 5.6.5 Kerb Returns

Kerb returns are recommended to be provided based on those specified in Council's DCP *Chapter G11: Subdivision of Land.* The recommended minimum kerb return radii are detailed in Table 5.25.

| Street Type                      | Minimum Kerb Return Radius |
|----------------------------------|----------------------------|
| Access Street                    | 6m                         |
| Local / Retail / Riparian Street | 6m                         |
| Laneway                          | 5m                         |
| Collector Road                   | 8m                         |

#### Table 5.25: Recommended Minimum Kerb Return Radium in Residential Streets

In addition to this, vehicle swept paths should be undertaken to demonstrate compliance to the application of these kerb returns in accordance to Austroads *Guide to Road Design Part 4 – Section 5*.



## 5.6.6 Cul-de-sacs

The design of cul-de-sacs should be undertaken in accordance with Council's *Standard Drawing* 2637-36 – *Typical Geometry of Cul-de-sac*. The minimum turning head radius required for cul-de-sacs is 9.5m.

#### 5.6.7 Recommendations

### 5.6.7.1 Road Typology

It is recommended the road typology provided in the MVRN Draft DCP is amended to reflect that shown in Figure 5.3.



#### Figure 5.3: Proposed Road Network Layout and Typology

#### 5.6.7.2 Restricted Direct Vehicular Access

Direct driveway access to and/or from collector roads within the URA is recommended to be prohibited for those locations shown on Figure 5.4, which are those primary external connections that will be carrying the most traffic. This is to reduce conflicts in those zones, ensuring adequate efficiency and road safety on these important external connections.





#### Figure 5.4: Recommended Restricted Access Treatment

As shown in Figure 5.4, a number of streets proposed by the proponent to intersection with collector roads are recommended as cul-de-sacs to reduce the number of conflicts. For corner lots with at least one frontage on a collector road, it is recommended vehicular access be provided via the lower order road to minimise conflicts.

## 5.7 Roundabout Assessment

#### 5.7.1 Assessment Locations

The key roundabouts assessed are based on Council's amended road typology sketch and shown in Figure 5.5.





#### Figure 5.5: MVRN URA Key Intersections

## 5.7.2 Capacity Mechanisms

It is necessary to define intersection capacity and over-capacity mechanisms in order to inform the intersection upgrades required. Intersection modelling is undertaken under Transport for New South Wales' (TfNSW) *Traffic Modelling Guidelines* (2013). Intersection capacity limits are to be consistent with the following conditions:

• Roundabouts: Maximum practical Degree of Saturation (DOS) is 0.85.

Table 5.26 is sourced from TfNSW' *Traffic Modelling Guidelines* (2013) and indicates the control delay for vehicle Level of Service (LOS) calculations.



| Level of Service | Control delay per vehicle in seconds (d)<br>(including geometric delay) |  |  |
|------------------|-------------------------------------------------------------------------|--|--|
|                  | All Intersection Types                                                  |  |  |
| А                | d < 14                                                                  |  |  |
| В                | d < 15 to 28                                                            |  |  |
| С                | d < 29 to 42                                                            |  |  |
| D                | d < 43 to 56                                                            |  |  |
| E                | d < 57 to 70                                                            |  |  |
| F                | d > 70                                                                  |  |  |

#### Table 5.26: Control Delay for Vehicle LOS Calculations

## 5.7.3 Intersection Parameters and Geometry

Key intersections shown in Figure 5.5 have been assessed in detail including SIDRA analysis. These include roundabouts identified on the proponent's indicative road layout, or those added in subsequent amendments by Council and Stantec. For the purpose of SIDRA modelling, local, retail, riparian and access street roundabouts are assumed to inherit identical roundabout dimensions (i.e. central radius, circulating width) and are referred to as 'Streets' throughout Section 5.7. Collector Roads Tier 1 and Tier 2 roundabouts are to inherit identical dimensions and are referred to as 'Collector Roads' throughout Section 5.7. In the process of modelling each intersection within SIDRA, each roundabout along the road network was designed to relevant standards and Council guideline requirements.

The central island radius and circulating carriageway width of each roundabout was sourced from Austroads *Guide to Road Design Part 4B Roundabouts*. The roundabout dimensions are detailed in Table 5.27.

# Table 5.27:Internal Roundabout Island Radius and Circulating Width (For purposes of<br/>Traffic modelling)

| Road Typology  | Central Island Radius (m) | Circulating Width (m) |
|----------------|---------------------------|-----------------------|
| Collector Road | 12                        | 7.6                   |
| Streets        | 8                         | 6.7                   |

As shown, both the central island radius and circulating width differ as per the road typologies within the road network. Roundabouts along collector roads require a 12m central island radius and 7.6m circulating width to allow manoeuvrability of a 19m semi-trailer design vehicle within the URA. Roundabouts on roads with a lesser hierarchy than collector roads, streets, require an 8m central island radius and 6.7m circulating width as the minimum requirements in accordance to Austroads guides.

Roundabouts within the URA road network are required to demonstrate sufficient spacing between each intersection. Minimum spacing between intersections within residential streets are required in accordance to Council's DCP *Chapter G11: Subdivision of Land* and detailed in Table 5.28.



#### Table 5.28: Spacing of Intersections Along Residential Streets

| Scenario                             | Spacing Between Intersections |                 |  |
|--------------------------------------|-------------------------------|-----------------|--|
| Scenario                             | Streets                       | Collector Roads |  |
| On same side of through street       | 60m                           | 100m            |  |
| On opposite sides of through streets | 40m                           | 60m             |  |
| 3 or more consecutive roundabouts    | 70m                           | 70m             |  |

All intersections within the URA have been reviewed and the recommended intersection spacings are supported and comply with Table 5.28.

It is noted that roundabouts of smaller dimensions have been approved across the broader Council road network, however the above dimensions reflect current Austroads guidelines. Lesser dimensions may be considered by Council on a case by case basis however lesser dimensions are unlikely to be supported by technical standards, and it is recommended that greenfield developments comply with current best practice guidelines.

### 5.7.4 Intersection Scenarios

The intersection arrangements within the MRVN URA have been modelled as roundabouts throughout the road network. The SIDRA layouts are roundabout configurations allocated for collector roads and streets, as shown in Table 5.29.



### Table 5.29: SIDRA Roundabout Layouts





#### Moss Vale Road North URA Traffic Study: Internal Traffic Analysis Report Project: P4627 Version: 005

## 5.7.5 Model Outputs

The SIDRA output summary sheets for each traffic and intersection scenario of the proposed internal URA road layout are provided in **Appendix A**.

The SIDRA assessment outputs for each traffic and intersection scenario of the proposed internal URA road layout are provided in **Appendix B**. An overview of the roundabout node numbers in reference to the TRACKS model is also demonstrated.

## 5.7.6 Collector Road Roundabouts

The intersection remains within acceptable limits of DOS, delay times and LOS outcomes for both AM and PM peak periods of 2041 AAST.

DOS values are at the lowest of 0.01 for Node 21750 in the AM peak and rise to a maximum of 0.58 for Node 21899 in the AM peak hour Bells Lane northern approach. LOS of 'A' remains consistent throughout all scenarios of the intersection. The 95th percentile queuing length reaches 42.8m for Node 21899 in the AM peak hour along the Bells Lane northern approach, however a delay time of 9.7 seconds remains consistent with the TfNSW conditions detailed in Table 5.26.

The roundabout locations are supported following a review of the traffic analysis and with regards to road safety and local area traffic management.

## 5.7.7 Street Roundabouts

The intersection remains within acceptable limits of DOS, delay times and LOS outcomes for both AM and PM peak periods of 2041 AAST.

DOS values are at the lowest of 0.01 for Node 21744 in the AM peak and rise to a maximum of 0.51 for Node 20592 in the AM peak hour Pestells Lane northern approach. LOS of 'A' remains consistent throughout all scenarios of the intersection. The 95th percentile queuing length reaches 29.5m for Node 20592 in the AM peak hour along the Pestells Lane northern approach, however a delay time of 9.7 seconds remains consistent with the TfNSW conditions detailed in Table 5.26.

The roundabout locations are supported following a review of the traffic analysis and with regards to road safety and local area traffic management.

## 5.7.8 Results Summary

A summary of the intersection assessment is provided in Table 5.30, with green boxes indicating the intersection is within capacity, yellow boxes indicating is at capacity, and red boxes indicating the intersection is over-capacity.

| Table 5.30: Int | ternal URA Inte | ersections Res | sults Summary |
|-----------------|-----------------|----------------|---------------|
|-----------------|-----------------|----------------|---------------|

|                       | Model Scenario       |                      |
|-----------------------|----------------------|----------------------|
| Intersection Scenario | 2041 AAST<br>AM Peak | 2041 AAST<br>PM Peak |
| Collector Road        | Under                | Under                |
| Streets               | Under                | Under                |



## 5.7.9 LATM Assessment

A local area traffic management (LATM) assessment has been undertaken in regard to the location of roundabouts within the subject URA. AMCORD's *Design Elements* (1995) states the following in terms of designing for safety,

"Roundabouts are primarily used at junctions and intersections to reduce the number of conflict points in turns. They can also be used for speed control (they tend to keep vehicle speeds more constant than other devices, with fewer stops/starts, ...

Vertical alignments, such as speed humps and platforms, can be effective but are also unpopular with drivers and cause problems for buses, motorcyclists and emergency vehicles. Their use should therefore generally be discouraged."

AMCORD's minimum spacing of junctions along residential streets is detailed in Table 5.31.

#### Table 5.31: Spacing of Junctions Along Residential Streets

| Road Typology  | Spacing Between Intersections |  |
|----------------|-------------------------------|--|
| Collector Road | 80m                           |  |
| Streets        | 40m                           |  |

As shown, the minimum spacing of intersections is lesser to the requirements of Austroads *Guide to Road Design Part 4B Roundabouts* specified in Section 5.7.3. As a result, the proposed intersection spacing within the URA is deemed sufficient.

Other LATM guidelines that apply to the development are stipulated in Austroads *Guide to Traffic Management Part 8* (2020). Treatment types such as vertical deflection types, threshold treatments and tactile surface treatments are not preferred within residential areas due to the acoustic impacts and the adverse impacts for buses, commercial vehicles and emergency vehicles. Preferred treatments for residential areas are horizontal deflection types (i.e. roundabout) due to the high volume of through traffic.

The proposed roundabout locations are supported following a review of not just the traffic analysis but best practice guidelines with regards to local area traffic management.

## 5.7.10 Turn Warrants Assessment

A turn warrants assessment has been undertaken for all priority-controlled intersections located on the recommended collector roads. The turn warrants assessment has been undertaken in accordance with Austroads *Guide to Traffic Management Part 6: Intersections, Interchanges and Crossings Management* (2020). The following criteria was adopted for the assessment:

- All intersections assessed as two-lane, two-way road types
- Right turn types assessed without splitter island
- Major road assessed with design speed ≤70km/h.

The turn warrants assessment adopted traffic volumes extracted from the 2041 AAST AM and PM TRACKS models.

The location of the intersections assessed are shown in Figure 5.6.





#### Figure 5.6: Turn Warrants Assessment Locations

Based on the TRACKS model volumes, the turn warrants assessment indicates that basic right (BAR) and basic left (BAL) turn treatments will suffice at each intersection. The recommended cross section for both tiers of collector road is expected to cater for the provision of BAR and BAL turn treatments in accordance with requirements outlined in Austroads *Guide to Road Design Part 4a: Unsignalised and Signalised Intersections* (2017). Both types of turn treatment are expected to require the installation of traffic control devices (e.g. signs, line marking) and is unlikely to require additional civil works (e.g. carriageway widening). Should higher order turn treatments (i.e. channelised right turn – short (CHR(S)) and auxiliary left turn – short (AUL(S))) be required, is expected the recommended cross sections are able to support that outcome as well.

Relevant traffic volumes and turn warrants inputs are provided in Appendix C.

## 5.7.11 Recommendations

The proposed roundabout layouts are evidently efficient in all scenarios proposed in the SIDRA assessment. The roundabout locations are supported following a review of the traffic analysis.

Further treatment measures such as vertical deflection devices are not deemed appropriate given the area is predominantly residential, and that the roundabouts have been appropriately positioned to address both traffic management and local area traffic calming



BAR and BAL turn treatments are required at each intersection of the URA. In the event of requiring higher turn treatments, the recommended cross sections are expected to cater to support this outcome, without requiring civil design amendments.

Given the guidelines and recommendations detailed in the LATM and turn warrants assessment, the locations and use of roundabouts are deemed sufficient with regards to road safety and local area traffic management.

# 5.8 Retail Centre Assessment

## 5.8.1 Car Parking Assessment

A car parking assessment was undertaken to determine and compare the amount of angled and parallel parking spaces that could be provided along the retail streets within the retail centre. Car parking dimensional requirements are in accordance with Australian Standard *AS2890.5 Parking Facilities Part 5: On-street parking* (2020). The indicative kerbside road lengths were sourced from the TRACKS model (May 2020 version). The key assumptions made are detailed by the following:

- The entire kerbside road length is available for car parking
  - Laneways, Development Access and Pedestrian Facility locations and dimensions are currently unknown, therefore the impacts of these have not been quantified at this stage
- A high turnover of on-street parking is considered as a conservative approach
- Minimising reversing into on-street parking spaces is desirable.

The parallel on-street car parking dimensions applicable to the retail streets of the development are detailed in Table 5.32.

#### Table 5.32: Parallel On-street Car Parking Dimensions

| Parking Space      | Length (m) |
|--------------------|------------|
| Intermediate Space | 8          |
| End Space          | 8          |

Further to the parking space lengths in Table 5.32, AS2890.5 also notes the length of on-street disabled car parking spaces should be a minimum length of 7.8m.

The 90° angled on-street car parking dimensions applicable to the retail streets of the development are detailed in Table 5.33.

#### Table 5.33: Angled (90°) On-street Car Parking Dimensions

| Parking Space          | Width (m) |
|------------------------|-----------|
| Intermediate Space     | 2.6       |
| Space Parallel to Kerb | 2.6       |

The three retail streets within the development are defined as 'Retail Street 1' for the western retail street, 'Retail Street 2' for the middle retail street and 'Retail Street 3' for the eastern retail street. The maximum retail car parking requirements comparing parallel and angled car parking is detailed in Table 5.34.


| Street          | Length of Road<br>(m) | End Spaces /<br>Parallel to Kerb | Intermediate<br>Spaces | Total Spaces | Provision  |
|-----------------|-----------------------|----------------------------------|------------------------|--------------|------------|
|                 |                       |                                  | Parallel               |              |            |
| Retail Street 1 | 149                   | 4                                | 34                     | 38           |            |
| Retail Street 2 | 122                   | 4                                | 27                     | 32           | 115 Spaces |
| Retail Street 3 | 182                   | 4                                | 42                     | 46           |            |
|                 |                       | Aı                               | ngled (90°)            |              |            |
| Retail Street 1 | 149                   | 4                                | 111                    | 116          |            |
| Retail Street 2 | 122                   | 4                                | 90                     | 94           | 349 Spaces |
| Retail Street 3 | 182                   | 4                                | 136                    | 140          |            |

#### Table 5.34: Maximum Retail Street On-street Car Parking Provisions

As shown in Table 5.34, a maximum of 115 parallel car parking spaces are available within the retail streets of the development. In comparison, a maximum 349 angled (90°) car parking spaces are available.

The provision of angled parking would require amendment to the recommended Retail Street cross section to address relevant requirements specified in AS2890.5.

The proposed gross floor area (GFA) of the retail components have been provided by Council. Council's DCP *Chapter G21: Car Parking and Traffic* was used to source car parking rates for the retail considerations of the URA. The proposed retail land use and required car parking is presented in Table 5.35.

#### Table 5.35: Retail Component Car Parking Requirements

| Land Use        | Quantity (GFA)    | Rate                   | Parking Spaces |
|-----------------|-------------------|------------------------|----------------|
| Supermarket     | 800m <sup>2</sup> | 1 per 19m²             | 43             |
| Specialty Shops | 800m <sup>2</sup> | 1 per 24m <sup>2</sup> | 34             |
|                 |                   | Total                  | 77             |

As shown in Table 5.35, a total of 77 car parking spaces are required as part of the URA retail component. As per Council's DCP, the minimum car parking provision required by the retail component yields should be provided wholly off-street (i.e. within the subject retail developments).

In comparing the maximum achievable on-street parking provisions and retail component car parking requirements in Table 5.34 and Table 5.35 respectively, a reasonable stock of on-street overflow car parking is provided as a result of parallel car parking. Given angled car parking would result in a total of 338 on-street car spaces (a significant over supply), parallel on-street parking provision is deemed sufficient for the retail streets of the development, whilst providing a reasonable overflow of on-street parking.

Development accesses and pedestrian facilities' locations and sight distance considerations will reduce the potential provision of car parking within the retail streets. As key assumptions cannot be accurately accounted for in the maximum provision of on-street car parking, a 20% reduction of on-street spaces has been applied in consideration of this. As a result, approximately 78 parallel on-street spaces can be provided as part of the on-street car parking provision within the three (3) retail streets.

When considering the types of developments proposed within the retail component, some are deemed appropriate for use of on-street parking by overflow demand while others are not.

The use of on-street parking is considered appropriate by overflow demand from land uses such as



restaurants, cafes, and hair salons as they typically do not require loading and unloading of goods to/from visitors' vehicles. Conversely, land uses such as supermarkets, liquor stores, medical centres and child care centres are intensive for the loading and unloading of goods and people, particularly those considered to be vulnerable road users (e.g. children, elderly persons, disabled persons, etc.). As such, the use of on-street parking for their overflow demand is not considered appropriate.

Following this assessment, relevant sections of Council's DCP relating to off-street car parking for all proposed developments is supported. Consideration of overflow demand (in excess of minimum DCP requirements) is best provided by way of parallel parking in / around the retail precinct.

### 5.8.2 Alternative Locations

In the event the retail centre is relocated to another location within the URA, principles for the selection of another location should be considered as follows:

- Locate the retail centre centrally within the URA, between the Central Boulevard and Bells Lane, where it can be efficiently accessed from the primary road network (adopted as part of the Nowra Bomaderry Structure Plan) to facilitate efficient local access, but also facilitate efficient access to/from the surrounding road network without impacting local residential amenity
- Locate retail centre adjacent to main road (Bells Lane) and local road network (Central Boulevard and Abernethy's Lane) defined in the Nowra-Bomaderry Structure Plan (2006)
- Locate retail centre with a collector road on at least two frontages
- Locate retail centre adjacent to open space to maximise active transport connectivity
- Locate the retail centre where the same high level of public transport accessibility for the centre can be provided as currently recommended (the current proposed retail location and associated public transport recommendations facilitates bus passage in either direction around the current retail centre, with road typologies that facilitate bus passage in either direction around the centre to keep options open for future serviceability)

### 5.9 Proponent Central Boulevard Alignment

The proponent's proposed amendments to Central Boulevard are displayed in Figure 5.7.





### Figure 5.7: Proponent's Proposed Central Boulevard Alignment

The radius of the new proposed curves of Central Boulevard appears to be less than those previously proposed by the proponent. In the absence of detailed plans, the new proposed curves result in a less desirable outcome, particularly where side streets are located on the inside of the new proposed curves. The position of side streets on low radius curves is likely to result in insufficient safe intersection sight distance (SISD).

This revised layout has only been proposed during the final stages of this internal traffic report. Notwithstanding, subject to a more detailed engineering review of the revised road geometry, the current proposed road layout and associated roundabout locations could be augmented to suit the revised Central Boulevard road alignment, without any change to the number of intersections or roundabout locations. However, on the basis of the marginally poorer alignment, one possible mitigation measure may be to extend the 'access restrictions' from the first roundabout to the Village Boulevard, to protect the integrity of the network in response to the suggested change.



# 6. PUBLIC AND ACTIVE TRANSPORT

### 6.1 Public Transport

Public transport is a major focus for the MVRN URA throughout each stage of the development. Bus operations will occur based on the proposed staging plan, indicated by an 'interim' route and 'ultimate' route. A detailed layout of Council's staging plan is detailed in Figure 3.2. The proposed bus service operations are shown in Figure 6.1 and Figure 6.2.



Figure 6.1: 'Interim' Route of Bus Operations





### Figure 6.2: 'Ultimate' Route of Bus Operations

As shown, the bus route within the URA is proposed in accordance with the proponent's staging plan of the development. Proposed completion of Stages 1 to 12 is by 2031 and the 'interim' bus route is planned accordingly. Proposed completion of Stages 13 to 20 is by 2041 and the 'ultimate' bus route is planned accordingly.

Primary feeder roads such as Pestells Lane and Abernethy's Lane are identified as potential future bus route connections to the 'ultimate' bus route.

While only some roads are designed in accordance with TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites,* a number of roads within the recommended road network layout and typology are considered to be bus capable roads. The bus capable roads are shown in Figure 6.3.





### Figure 6.3: Bus Capable Roads

As shown in Figure 6.3, bus capable roads include collector roads, local streets, retail streets and riparian streets. It should be noted the provision of compliant bus stops can only be achieved on roads that include a minimum 3m wide parking lane for kerbside bus stops (i.e. collector roads). However, it is expected the 3.5m wide traffic lanes combined 2.3m wide parking lanes will allow for buses to infrequently stop along those roads without significantly impacting safety and efficiency.

The bus capable roads plan is intended to address the numerous possible sequence of staging that could occur within a very large URA (such as the MVRN URA), ensuring that adequate public transport serviceability can provided throughout the staged development of the URA as well as providing flexible options for service providers over time, and strong external connectivity and connectivity to the future Meroo Meadow URA.

TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites – Section 4.4,* stipulates a 'bus stop guideline' applicable to the MRVN URA. Compliance to this guideline is demonstrated in Table 6.1.



| Guideline                                                                                                                                                | Provided                                                                                                                                                                                                  | Compliance |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Spacing of around 400 metre<br>between stops or spacing that<br>reflects the local context and<br>location                                               | Bus stops are generally located 350m – 450m apart, as shown in Figure 6.1 and Figure 6.2                                                                                                                  | Complies   |
| Safe pedestrian access, including road crossings                                                                                                         | Key roundabouts along collector roads are to<br>include the provision of pedestrian refuge islands on<br>approach. The minimum requirement for pedestrian<br>road crossings is demonstrated in Figure 6.5 | Complies   |
| Bus stops located on the<br>departure side of a pedestrian<br>crossing to reduce the risk of<br>customers crossing the road in<br>front of a stopped bus | The provision of bus stops shown in Figure 6.1 and Figure 6.2 are to be located at both sides of the road                                                                                                 | Complies   |
| Minimise walking distance between interchange stops                                                                                                      | Bus stops are located within approximately 400m, as shown in Figure 6.1 and Figure 6.2                                                                                                                    | Complies   |
| Bus stops are generally paired                                                                                                                           | The provision of bus stops shown in Figure 6.1 and Figure 6.2 are to be located at both sides of the road                                                                                                 | Complies   |
| Adequate kerb and roadway<br>space for safe and efficient public<br>transport operations                                                                 | Cross sections of collector roads demonstrate<br>sufficient spacing for public transport operations,<br>shown in Section 5.6.3                                                                            | Complies   |
| Buses should stop in the roadway rather than in bus indent bays                                                                                          | Bus stops are to stop in the parking lane of the collector road carriageway                                                                                                                               | Complies   |
| Locate stops on the far side of<br>intersections to allow a bus to<br>clear the intersection before<br>stopping for customers                            | Demonstrated in Figure 6.1 and Figure 6.2                                                                                                                                                                 | Complies   |
| No part of a structure is to be<br>within 800mm of the road edge to<br>allow for safe bus operation                                                      | Demonstrated in Figure 6.1 and Figure 6.2                                                                                                                                                                 | Complies   |

#### Table 6.1: Public Transport Compliance to TfNSW Guidelines

As shown, recommended public transport operations within the MVRN URA comply with TfNSW guidelines.

### 6.2 Active Transport

### 6.2.1 Shared Use Pathway Network

A draft open space study has been conducted by Elton Consulting, dated 1<sup>st</sup> June 2020, for the MVRN URA. The open space masterplan is analysed to provide recommendations for the indicative SUP of the URA. The open space masterplan is provided in Figure 6.4.





SOURCE: Elton Consulting

### Figure 6.4: Open Space Masterplan

Recommendations for the above open space masterplan are detailed as follows:

- 2.5m shared use path is not recommended through the north-south retail streets to the south of Village Boulevard given:
  - These streets are recommended as retail streets and a shared use path cannot be provided without narrowing the recommended planting width and increasing offset width within the verge
  - Strong SUP connections are recommended to/from and around the retail centre, however wide footpaths within and throughout the retail centre (i.e. higher pedestrian concentrations within retail centres do not make these areas conducive to higher speeds typically associated with SUPs)
- Recommend connecting 2.5m shared path south of location '14' (riparian corridor) into Bells Lane
  - Preferred outcome is to continue the shared path further west into Bells Lane, and better locate the riparian crossing more central to the developments in that precinct
- Due to the uncertainty regarding whether a SUP can be provided on both sides of MVR as part
  of the proposed upgrade, allowance for a SUP must be made within the MVRN URA along the
  southern boundary with multiple connections to/from the URA from (west to east); the western



side of Stage 4, Central Boulevard, the eastern side of Stage 1, and Bells Lane. Until such time as the design for the upgrade of MVR is more advanced, the URA must provide for the SUP along its southern boundary to ensure its ultimate provision

The proposed SUP is provided in accordance with the road typology defined in Council's *Development Control Plan NB3 – Moss Vale Road South Urban Release Area* (MVRS DCP). The open space masterplan detailed in Figure 6.4 is influential to the proposed shared use network and applies the detailed recommendations. The proposed road typology for the internal layout of the URA derived from the MVRS DCP is detailed in Section 5.1 and the proposed SUP is shown in Figure 6.5.



#### Figure 6.5: Proposed Shared Use Network

The proposed development provides a comprehensive shared use network, connecting residential lots to nearby public transport, the local centre and public open spaces. The recommended SUP is heavily connected within the riparian corridor which connects to collector and riparian roads of the URA.

A flexible provision for the SUP to the south of MVR is considered essential due to the uncertainty as to whether it can be provided within the Moss Vale Road reserve. Until this issue is clarified, it must be accommodated within the URA along the southern boundary to ensure its ultimate provision.

A separate map is provided in Figure 6.6 demonstrating the recommended SUP without the URA road typologies.





Figure 6.6: Proposed Shared Use Network Without Road Typologies

### 6.2.2 Pedestrian Pathway Walking

Pedestrian pathways are provided within the verge of each road typology. The dimensions of pedestrian pathways are detailed in Section 5.6.3.

Recommended pedestrian crossings are shown in Figure 6.5. Additional pedestrian crossing facilities should be identified at development application stage in accordance to relevant Australian Standards, Austroads, Council and TfNSW guidelines. The provision of refuge islands is also recommended on the approach to all roundabouts and are to be designed in accordance to Austroads *Guide to Road Design Part 4B Roundabouts* with consideration of cyclist use.



# 7. CONCLUSION

The key findings of the MRVN URA internal traffic study are as follows:

- A review was undertaken to assess the proponent's proposed and Council's amended road network layout and typologies of the MVRN URA. The modifications proposed and the associated recommended changes by Bitzios are all supported following this technical review
- As an ultimate development scenario, forecast peak hour traffic volumes were extracted from the TRACKS 2041 AAST models and were converted to daily volumes using an expansion factor sourced from council of 11.765, representing roads such as Illaroo Road
- Each cross-section component for each road typology proposed by the proponent was assessed against relevant standards and guidelines. Individual cross sections are recommended for Collector Roads, Local & Retail Streets, Riparian Street, Access Streets and Rear Laneways
- Particular considerations are outlined for corner truncations, kerb returns and cul-de-sacs in accordance to relevant Austroads and Council guidelines
- Based on the road typologies and recommended cross sections, a recommended road network layout is proposed and the locations of restricted direct vehicular access onto collector roads are identified
- A SIDRA 8 intersection assessment was undertaken to assess each roundabout within the proposed URA based on traffic volumes sourced from the Shoalhaven-Kiama TRACKS model (May 2020 version)
- The proposed intersection layout is efficient in all scenarios assessed within SIDRA
- Horizontal deflection LATM treatments (i.e. roundabouts) are recommended within the URA to minimize conflict points and reduce acoustic impacts given the residential environment of the URA. The proposed roundabout locations are supported following a review of not just the traffic analysis but best practice guidelines with regards to local area traffic management
- The turn warrants assessment indicates that BAR and BAL treatments will suffice for each intersection of the development. This can be addressed within the cross sections of the proposed road typologies without requiring any additional localised widenings or civil adjustments
- A car parking assessment was undertaken comparing the amount of parallel on-street car parking against angled (90°) on-street car parking within the retail streets of the URA in accordance to AS2890.5. A maximum of 115 parallel car parking spaces can be provided within the retail streets compared to a maximum capacity of 349 angled car parking spaces
- The retail component requires 77 on-street / off-street car parking spaces in accordance to Council's DCP. As a result, providing on-street angled car parking within the retail streets would over-compensate the retail car parking requirements and therefore providing parallel on-street car parking is deemed sufficient for the development to cater for variable demands in excess of minimum DCP requirements
- Off-street car parking provisions are to consider the commercial activities that aren't suitable for on-street car parking such as child care centres, medical centres and supermarkets, as such, parking should be provided off-street for all developments in accordance with Council's DCP
- The recommended public transport layout reflects the indicative staging plan of the development. The 'interim' layout is recommended for years 2026 to 2031 and the 'ultimate' layout is recommended for years 2031 to 2041
- The recommended public transport operations and bus capable roads comply with TfNSW's *Guidelines for Public Transport Capable Infrastructure in Greenfield Sites*
- The proposed shared use network considers the outcomes and recommendations of the open space masterplan provided by *Elton Consulting*. Shared use pathways within the active transport



layout of the are predominant within the riparian corridor and the outskirts of the URA, which connects to Collector Roads, Riparian Streets, Local Streets and the external intersections

• Pedestrian pathways are provided within the verge of each road typology.





# Appendix A: SIDRA Output Summary Sheets







| 887 Year 2041 AM Peak Hour |          |                   |                                  |           |                     |                     |  |  |  |  |  |
|----------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|--|--|--|
| oach                       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |  |  |  |
|                            | Left     | 7                 | 0.02                             | 2.1       | 0.6                 | LOS A               |  |  |  |  |  |
| load (S)                   | Through  | 16                | 0.02                             | 2.6       | 0.6                 | LOS A               |  |  |  |  |  |
|                            | Right    | 1                 | 0.02                             | 6.3       | 0.6                 | LOS A               |  |  |  |  |  |
|                            | Left     | 1                 | 0.00                             | 3.3       | 0.2                 | LOS A               |  |  |  |  |  |
| oad (E)                    | Through  | 3                 | 0.00                             | 3.7       | 0.2                 | LOS A               |  |  |  |  |  |
|                            | Right    | 1                 | 0.00                             | 7.5       | 0.2                 | LOS A               |  |  |  |  |  |
|                            | Left     | 2                 | 0.08                             | 3.8       | 2.9                 | LOS A               |  |  |  |  |  |
| oad (N)                    | Through  | 111               | 0.08                             | 4         | 2.9                 | LOS A               |  |  |  |  |  |
|                            | Right    | 3                 | 0.08                             | 8.2       | 2.9                 | LOS A               |  |  |  |  |  |
|                            | Left     | 3                 | 0.01                             | 3         | 0.4                 | LOS A               |  |  |  |  |  |
| oad (W)                    | Through  | 5                 | 0.01                             | 3.4       | 0.4                 | LOS A               |  |  |  |  |  |
|                            | Right    | 8                 | 0.01                             | 7.3       | 0.4                 | LOS A               |  |  |  |  |  |
| ection                     | All      | 162               | 0.08                             | 4         | 2.9                 | LOS A               |  |  |  |  |  |

| 100/ 192 |          | ik Houi           |                                  |                             |                     |                     |  |
|----------|----------|-------------------|----------------------------------|-----------------------------|---------------------|---------------------|--|
| oach     | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s)                   | 95%ile<br>Queue (m) | Level of<br>Service |  |
|          | Left     | 9                 | 0.03                             | 2.1                         | 1.1                 | LOS A               |  |
| load (S) | Through  | 34                | 0.03                             | 2.6                         | 1.1                 | LOS A               |  |
|          | Right    | 1                 | 0.03                             | 6.3                         | 1.1                 | LOS A               |  |
|          | Left     | 1                 | 0.00                             | 3                           | 0.1                 | LOS A               |  |
| oad (E)  | Through  | 3                 | 0.00                             | 0 3 0<br>0 3.4 0<br>0 7.2 0 | 0.1                 | LOS A               |  |
|          | Right    | 1                 | 0.00                             | 7.2                         | 0.1                 | LOS A               |  |
|          | Left     | 1                 | 0.04                             | 3.7                         | 1.4                 | 4 LOS A             |  |
| oad (N)  | Through  | 52                | 0.04                             | 4                           | 1.4                 | LOS A               |  |
|          | Right    | 3                 | 0.04                             | 8.2                         | 1.4                 | LOS A               |  |
|          | Left     | 3                 | 0.01                             | 3.1                         | 0.4                 | LOS A               |  |
| oad (W)  | Through  | 6                 | 0.01                             | 3.5                         | 0.4                 | LOS A               |  |
|          | Right    | 5                 | 0.01                             | 7.4                         | 0.4                 | LOS A               |  |
| oction   |          | 120               | 0.04                             | 37                          | 14                  | 105.4               |  |

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | Node 21804 Ye           | erage School T<br>ar 2041 AM Pe |                      |                                  |            |                |                     | Node 21674 Ye | ar 2041 AM Pea   | ak Hour           |                         |            |                    |                     | Node 21724              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|---------------------------------|----------------------|----------------------------------|------------|----------------|---------------------|---------------|------------------|-------------------|-------------------------|------------|--------------------|---------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Approach                | Movement                        | Domand               | Degree of<br>Saturation<br>(v/c) |            |                | Level of<br>Service | Approach      | Movement         | Demand<br>(veh/h) | Degree of<br>Saturation |            | 95%ile<br>ueue (m) | Level of<br>Service | Approach                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         | Left                            | 3                    | 0.03                             | 3          | 1              | LOS A               | Proposed      | Left             | 1                 | 0.01                    | 2.6        | 0.2                | LOS A               | Proposed                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | South East<br>Road (SE) | Through                         | 3                    | 0.03                             | 3.5        | 1              | LOS A               | Abernethys    | Through          | 4                 | 0.01                    | 3          | 0.2                | LOS A               | Abernethys              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (OL)               | Right                           | 25                   | 0.03                             | 7.2        |                | LOS A               | Lane (SE)     | Right            | 1                 | 0.01                    | 6.8        | 0.2                |                     | Lane (SE)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | North East              | Left                            | 21<br>137            | 0.11                             | 4.1        |                |                     | North East    | Left             | 1                 | 0.01                    | 4.1        | 0.4                |                     | North East              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (NE)               | Through<br>Right                | 137                  | 0.11                             | 4.4<br>8.5 |                | LOS A<br>LOS A      | Road (NE)     | Through<br>Right | 14                | 0.01                    | 4.4<br>8.5 | 0.4<br>0.4         |                     | Road (NE)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         | Left                            | 1                    | 0.02                             | 3.8        |                | LOS A               | Proposed      | Left             | 9                 | 0.01                    | 4.1        | 0.4                |                     | Proposed                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | North West<br>Road (NW) | Through                         | 3                    | 0.02                             | 4.2        |                | LOS A               | Abernethys    | Through          | 9                 | 0.01                    | 4.3        | 0.5                |                     | Abernethys              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (NVV)              | Right                           | 17                   | 0.02                             | 8.2        |                | LOS A               | Lane (NW)     | Right            | 2                 | 0.01                    | 8.4        | 0.5                |                     | Lane (NW)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | South West              | Left                            | 7                    | 0.09                             | 4.2        |                | LOS A               | South West    | Left             | 6                 | 0.01                    | 4.1        | 0.2                | LOS A               | South West              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (SW)               | Through<br>Right                | 114                  | 0.09                             | 4.5        |                | LOS A               | Road (SW)     | Through<br>Right | 2                 | 0.01                    | 4.4        | 0.2                | LOS A               | Road (SW)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Intersection            |                                 | 335                  | 0.09<br>0.11                     | 8.6<br>4.8 |                | LOS A               | Intersection  |                  | 1<br>54           | 0.01<br>0.01            | 8.5<br>5.5 | 0.2                | LOS A               | Intersection            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         |                                 |                      | •                                |            |                | 20071               |               |                  |                   | 0.01                    | 0.0        | 0.0                | 2007                |                         |
| 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | Node 21804 Ye           | ar 2041 PM Pe                   |                      | Degree of                        |            |                |                     | Node 21674 Ye | ar 2041 PM Pea   |                   | Degree of               |            |                    |                     | Node 21723 Y            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Approach                | Movement                        | Demand<br>(veh/h)    |                                  |            | %ile<br>ue (m) | Level of<br>Service | Approach      | Movement         | Demand<br>(veh/h) | Saturation<br>(v/c)     |            | 95%ile<br>ueue (m) | Level of<br>Service | Approach                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | South East              | Left                            | 2                    | 0.03                             | 2.9        | 0.9            | LOS A               | Proposed      | Left             | 1                 | 0.01                    | 2.5        | 0.2                |                     | South East              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (SE)               | Through                         | 3                    | 0.03                             | 3.4        |                |                     | Abernethys    | Through          | 4                 | 0.01                    | 3          | 0.2                |                     | Road (SE)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | ( )                     | Right                           | 24                   | 0.03                             | 7.1        |                | LOS A               | Lane (SE)     | Right            | 1                 | 0.01                    | 6.8        | 0.2                |                     | ( )                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | North East              | Left<br>Through                 | 32<br>132            | 0.11<br>0.11                     | 4.1<br>4.4 |                | LOS A<br>LOS A      | North East    | Left<br>Through  | 1                 | 0.01 0.01               | 4.1<br>4.4 | 0.4<br>0.4         |                     | North East              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Road (NE)               | Right                           | 1                    | 0.11                             | 8.5        |                | LOS A               | Road (NE)     | Right            | 12                | 0.01                    | 8.5        | 0.4                |                     | Road (NE)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | N1                      | Left                            | 1                    | 0.01                             | 3.9        |                | LOS A               | Proposed      | Left             | 12                | 0.02                    | 4.1        | 0.5                |                     | N                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | North West<br>Road (NW) | Through                         | 3                    | 0.01                             | 4.3        |                |                     | Abernethys    | Through          | 8                 | 0.02                    | 4.3        | 0.5                |                     | North West<br>Road (NW) |
| *600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | rtodd (rttr)            | Right                           | 9                    | 0.01                             | 8.3        |                | LOS A               | Lane (NW)     | Right            | 1                 | 0.02                    | 8.5        | 0.5                |                     | 10000 (1111)            |
| W <sup>R</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | South West              | Left                            | 12                   | 0.11                             | 4.2        |                | LOS A               | South West    | Left             | 7                 | 0.01                    | 4.1        | 0.3                |                     | South West              |
| could be a set of the |                                                        | Road (SW)               | Through<br>Right                | 136                  | 0.11<br>0.11                     | 4.4<br>8.6 |                | LOS A<br>LOS A      | Road (SW)     | Through<br>Right | 3                 | 0.01                    | 4.4<br>8.5 | 0.3<br>0.3         |                     | Road (SW)               |
| · /// · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | Intersection            | All                             | 358                  | 0.11                             | 4.7        |                | LOSA                | Intersection  | All              | 55                |                         | 5.2        |                    | LOSA                | Intersection            |
| Iodel Development and Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Model Description                                      |                         |                                 |                      |                                  |            |                |                     | Node 21724 Ye | ar 2041 AM Pea   | ak Hour           |                         |            |                    |                     | Node 21723 Y            |
| The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 21804 21674, 21724 and<br>21723 May 2020 version).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The traffic volumes repre<br>Circulating width and cen |                         |                                 |                      | 0                                | . ,        |                |                     | Approach      | Movement         | Demand<br>(veh/h) | Degree of<br>Saturation |            | 95%ile<br>ueue (m) | Level of<br>Service | Approach                |
| Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Circulating width and cen                              |                         | as geometry in                  | accordance with      | Distributor Not                  | unuabouts. |                |                     | Proposed      | Left             | 1                 | 0.00                    | 4.2        | 0.1                | LOS A               |                         |
| - the degree of saturation for a particular movement is between 0.70 and 0.85; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                         |                                 |                      |                                  |            |                |                     | Abernethys    | Through          | 1                 | 0.00                    | 4.4        | 0.1                | LOS A               | South East<br>Road (SE) |
| - the 95th percentile queue length is ±10m the length of the approach to the following intersection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                         |                                 |                      |                                  |            |                |                     | Lane (SE)     | Right            | 1                 | 0.00                    | 8.6        | 0.1                |                     | Road (SE)               |
| Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         |                                 |                      |                                  |            |                |                     | North East    | Left             | 1                 | 0.02                    | 3.9        | 0.7                | LOS A               | North East              |
| - the degree of saturation for any intersection movement exceeds 0.85; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                         |                                 |                      |                                  |            |                |                     | Road (NE)     | Through<br>Right | 26                | 0.02                    | 4.1<br>8.4 | 0.7<br>0.7         | LOS A<br>LOS A      | Road (NE)               |
| -the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                         |                                 |                      |                                  |            |                |                     | Proposed      | Left             | 1                 | 0.02                    | 6.4<br>4.1 | 0.7                |                     |                         |
| following intersection, or exceeds 500m for a continuous lane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                         |                                 |                      |                                  |            |                |                     | Abernethys    | Through          | 1                 | 0.00                    | 4.4        | 0.1                | LOS A               | North West              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         |                                 |                      |                                  |            |                |                     | Lane (NW)     | Right            | 1                 | 0.00                    | 8.5        | 0.1                |                     | Road (NW)               |
| lesign Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Key Findings                                           |                         |                                 |                      |                                  |            |                |                     | South West    | Left             | 1                 | 0.01                    | 3.9        | 0.5                |                     | South West              |
| The design year is 2041.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The intersection remains                               | within Degree           | of Saturation (D                | DoS) limits in all s | cenarios.                        |            |                |                     | Road (SW)     | Through          | 17                |                         | 4.1        | 0.5                |                     | Road (SW)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Level of Service (LoS)                               | - <b>f</b> 101 in       |                                 |                      |                                  |            |                |                     |               | Right            | 1<br>54           | 0.01                    | 8.4<br>4.5 | 0.5                | LOS A<br>LOS A      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                         | ent within all so               | enarios              |                                  |            |                |                     | Intersection  | All              | 54                | 0.02                    |            |                    |                     | Intersection            |

| 724 Year 2041 PM Peak Hour |          |                   |                                  |           |                     |                     |  |  |  |  |  |
|----------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|--|--|--|
| oach                       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |  |  |  |
| osed                       | Left     | 1                 | 0.00                             | 4.2       | 0.1                 | LOS A               |  |  |  |  |  |
| ethys                      | Through  | 1                 | 0.00                             | 4.4       | 0.1                 | LOS A               |  |  |  |  |  |
| (SE)                       | Right    | 1                 | 0.00                             | 8.5       | 0.1                 | LOS A               |  |  |  |  |  |
| East                       | Left     | 1                 | 0.02                             | 3.9       | 0.6                 | LOS A               |  |  |  |  |  |
| (NE)                       | Through  | 22                | 0.02                             | 4.1       | 0.6                 | LOS A               |  |  |  |  |  |
| (INE)                      | Right    | 1                 | 0.02                             | 8.4       | 0.6                 | LOS A               |  |  |  |  |  |
| osed                       | Left     | 1                 | 0.00                             | 4.2       | 0.1                 | LOS A               |  |  |  |  |  |
| ethys                      | Through  | 1                 | 0.00                             | 4.4       | 0.1                 | LOS A               |  |  |  |  |  |
| (NW)                       | Right    | 1                 | 0.00                             | 8.6       | 0.1                 | LOS A               |  |  |  |  |  |
| West                       | Left     | 1                 | 0.02                             | 3.9       | 0.6                 | LOS A               |  |  |  |  |  |
| (SW)                       | Through  | 24                | 0.02                             | 4.1       | 0.6                 | LOS A               |  |  |  |  |  |
| (311)                      | Right    | 1                 | 0.02                             | 8.4       | 0.6                 | LOS A               |  |  |  |  |  |
| ection                     | All      | 57                | 0.02                             | 4.4       | 0.6                 | LOS A               |  |  |  |  |  |

| 723 | Year  | 2041 | АМ     | Peak  | Hour |  |
|-----|-------|------|--------|-------|------|--|
| 20  | i cui | 2041 | 7.0111 | i can | noui |  |

| oach         | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|--------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| n East       | Left     | 12                | 0.02                             | 4.1       | 0.7                 | LOS A               |
| I (SE)       | Through  | 12                | 0.02                             | 4.3       | 0.7                 | LOS A               |
| (3E)         | Right    | 6                 | 0.02                             | 8.4       | 0.7                 | LOS A               |
| East         | Left     | 13                | 0.01                             | 4.3       | 0.4                 | LOS A               |
| I East       | Through  | 1                 | 0.01                             | 4.5       | 0.4                 | LOS A               |
|              | Right    | 1                 | 0.01                             | 8.7       | 0.4                 | LOS A               |
| West         | Left     | 1                 | 0.03                             | 3.1       | 1                   | LOS A               |
| (NW)         | Through  | 35                | 0.03                             | 3.4       | 1                   | LOS A               |
| (1400)       | Right    | 1                 | 0.03                             | 7.4       | 1                   | LOS A               |
| 10/+         | Left     | 1                 | 0.01                             | 4         | 0.3                 | LOS A               |
| West<br>(SW) | Through  | 1                 | 0.01                             | 4.2       | 0.3                 | LOS A               |
| (300)        | Right    | 11                | 0.01                             | 8.4       | 0.3                 | LOS A               |
| ection       | All      | 94                | 0.03                             | 4.8       | 1                   | LOS A               |

| Intersection  | All            | 94                | 0.03                             | 4.8       | 1                   | LOS A               |
|---------------|----------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Node 21723 Ye | ar 2041 PM Pea | ak Hour           |                                  |           |                     |                     |
| Approach      | Movement       | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
| South East    | Left           | 16                | 0.03                             | 4.1       | 1.1                 | LOS A               |
| Road (SE)     | Through        | 23                | 0.03                             | 4.3       | 1.1                 | LOS A               |
| Road (SE)     | Right          | 9                 | 0.03                             | 8.4       | 1.1                 | LOS A               |
| North East    | Left           | 8                 | 0.01                             | 4.1       | 0.3                 | LOS A               |
| Road (NE)     | Through        | 1                 | 0.01                             | 4.4       | 0.3                 | LOS A               |
|               | Right          | 1                 | 0.01                             | 8.5       | 0.3                 | LOS A               |
| North West    | Left           | 1                 | 0.01                             | 3.1       | 0.3                 | LOS A               |
| Road (NW)     | Through        | 11                | 0.01                             | 3.4       | 0.3                 | LOS A               |
| Roau (INVV)   | Right          | 1                 | 0.01                             | 7.4       | 0.3                 | LOS A               |
| South West    | Left           | 1                 | 0.01                             | 4         | 0.3                 | LOS A               |
|               | Through        | 1                 | 0.01                             | 4.3       | 0.3                 | LOS A               |
| Road (SW)     | Right          | 8                 | 0.01                             | 8.5       | 0.3                 | LOS A               |
| Intersection  | All            | 82                | 0.03                             | 5.1       | 1.1                 | LOS A               |
|               |                |                   |                                  |           |                     |                     |

|                                                                                                                                                                                                                                                                                             | Intersection Performance - Annual Average School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ol Term                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model Development and Assessment Criteria                                                                                                                                                                                                                                                   | Node:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20592                                                                                                                                                                                                                                                                                                                                             | Lane                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Node 21825                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        | Node 21807                                                                                                                                                                                                              |
| The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 20592, 21825 and 218 May 2020 version).                                                                                                                                                                     | 307 <sup>/</sup> N `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                   | Pestells                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        | ~ <u>_</u>                                                                                                                                                                                                              |
| Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows:<br>- the degree of saturation for a particular movement is between 0.70 and 0.85; and<br>- the 95th percentile queue lenath is ±10m the length of the approach to the following intersection. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A STATE                                                                                                                                                                                                                                                                                  | Last Poo                                                                                                               |                                                                                                                                                                                                                         |
| Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follow                                                                                                                                                                               | ws:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | // `                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                                                                                                                                                                                         |
| <ul> <li>the degree of saturation for any intersection movement exceeds 0.85; and</li> <li>the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the</li> </ul>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
| following intersection, or exceeds 500m for a continuous lane.                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )씨(                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /K>                                                                                                                                                                                                                                                                         | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
| Design Years                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Δ.)                                                                                                                                                                                                                                                                                                                                               | 6.7                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
| The design year is 2041.                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             | V 101<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16 16                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        | West Road                                                                                                                                                                                                               |
| Model Description                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             | - KK /                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                        | Ø                                                                                                                                                                                                                       |
| The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST).                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ///                                                                                                                                                                                                                                                                                                                                               | /1/                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
| Circulating width and central island radius geometry in accordance with Distributor Roundabouts.                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             | un al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -50 () ()                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   | Contra Contra                                                                                                                                                                                                                                                                                                                                                                                  | *///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TH Case                                                                                                                                                                                                                                                                                  | ``                                                                                                                     |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                | °G. `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ^ ·                                                                                                                                                                                                                                                                                    |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>1</i> 02                                                                                                                                                                                                                                                                              |                                                                                                                        |                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                             | Node 20592 Year 2041 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / Peak Hour                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Node 21825 Year 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AM Peak Hour                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                                                                                                                                                                                                                                                                                      |                                                                                                                        | Node 21807 Year 20                                                                                                                                                                                                      |
| Key Findings                                                                                                                                                                                                                                                                                | Node 20592 Year 2041 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Demond                                                                                                                                                                                                                                                                                                                                            | gree of                                                                                                                                                                                                                                                                                                                                                                                        | 95%ile Level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Node 21825 Year 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Demand                                                                                                                                                                                                                                                                      | Degree of                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95%ile                                                                                                                                                                                                                                                                                   | Level of                                                                                                               | Node 21807 Year 20                                                                                                                                                                                                      |
| Key Findings<br>The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                         | Node 20592 Year 2041 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent Demand Sa                                                                                                                                                                                                                                                                                                                                     | turation Delay (s)                                                                                                                                                                                                                                                                                                                                                                             | 95%ile Level of<br>Queue (m) Service                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Node 21825 Year 2041<br>Approach Move                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Demand                                                                                                                                                                                                                                                                      | Saturation Dela                                                                                                                                                                                                                                                                                                                                                                                                                                        | y (s) 95%ile<br>Queue (m                                                                                                                                                                                                                                                                 | Level of<br>Service                                                                                                    | Node 21807 Year 20<br>Approach M                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent Demand De<br>(veh/h) Sat                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approach Move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Demand                                                                                                                                                                                                                                                                      | Saturation Dela<br>(v/c)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                          |                                                                                                                        | Approach M                                                                                                                                                                                                              |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach Moveme<br>Pestells Lane Left<br>(SE) Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ent Demand (veh/h) Sat<br>65<br>120                                                                                                                                                                                                                                                                                                               | turation         Delay (s)           (v/c)         0.18         5.6           0.18         9                                                                                                                                                                                                                                                                                                   | Queue (m)Service8LOS A8LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approach Move<br>South East Thre<br>Road (SE) Ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Demand<br>(veh/h)bugh62<br>20                                                                                                                                                                                                                                               | Saturation<br>(v/c)         Dela           0.05         3           0.05         7                                                                                                                                                                                                                                                                                                                                                                     | <b>Queue (m</b><br>6 2<br>6 2                                                                                                                                                                                                                                                            | LOS A<br>LOS A                                                                                                         |                                                                                                                                                                                                                         |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach<br>Pestells Lane Left<br>(SE) Right<br>Pestells Lane Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ent Demand<br>(veh/h) 65<br>: 120<br>313                                                                                                                                                                                                                                                                                                          | turation         Delay (s)           (v/c)         0.18           0.18         5.6           0.18         9           0.51         6.2                                                                                                                                                                                                                                                         | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A                                                                                                                                                                                                                                                                                                                                                                                      | Approach Move<br>South East Thro<br>Road (SE) Ri<br>North East Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ment Demand<br>(veh/h)<br>bugh 62<br>ght 20<br>eft 118                                                                                                                                                                                                                      | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3                                                                                                                                                                                                                                                                                                                                            | <b>Queue (m</b><br>6 2<br>6 2<br>9 4                                                                                                                                                                                                                                                     | LOS A<br>LOS A<br>LOS A<br>LOS A                                                                                       | Approach M                                                                                                                                                                                                              |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left                                                                                                                                                                                                                                                                                                                                                                                         | Demand<br>(veh/h)         Demand<br>Sat           65         120           313         241           119         119                                                                                                                                                                                                                              | Delay (s)           (y/c)           0.18           0.18           0.51           0.51           0.51           0.51           0.51           0.51           0.51                                                                                                                                                                                                                               | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A                                                                                                                                                                                                                                                                                                                                                           | Approach Move<br>South East Thr<br>Road (SE) Ri<br>North East La<br>Road (NE) Ri<br>North West La                                                                                                                                                                                                                                                                                                                                                                                                                 | ment Demand<br>(veh/h)<br>pugh 62<br>ght 20<br>oft 118<br>ght 1<br>eft 3                                                                                                                                                                                                    | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3           0.11         8           0.13         4                                                                                                                                                                                                                                                                                          | y (s)         Queue (m)           6         2           6         2           9         4           1         4.9                                                                                                                                                                        | I) Service<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                                                | Approach M<br>East Road (E)<br>North Road(N)                                                                                                                                                                            |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach Moveme<br>Pestells Lane Left<br>(SE) Right<br>Pestells Lane Left<br>(N) Right<br>URA Access Left<br>(SW) Right                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Demand<br>(veh/h)         Demand<br>Sat           65         120           313         241           119         254                                                                                                                                                                                                                              | Delay (s)           (v/c)           0.18           0.18           0.18           0.51           0.51           0.51           0.51           0.51           0.30           4.7           0.30                                                                                                                                                                                                  | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A                                                                                                                                                                                                                                                                                                                                                           | Approach Move<br>South East Thr<br>Road (SE) Ri<br>North East LL<br>Road (NE) Ri<br>North West LL<br>Road (NW) Thr                                                                                                                                                                                                                                                                                                                                                                                                | ment Demand<br>(veh/h)<br>bugh 62<br>ght 20<br>fft 118<br>ght 1<br>oft 3<br>bugh 185                                                                                                                                                                                        | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4                                                                                                                                                                                                                                                                                          | y (s)         Queue (m)           6         2           6         2           9         4           1         4.9           4         4.9                                                                                                                                                | LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                                            | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)                                                                                                                                                           |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach<br>Pestells Lane Left<br>(SE) Right<br>Pestells Lane Left<br>(N) Right<br>URA Access Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Demand<br>(veh/h)         Demand<br>Sat           65         120           313         241           119         254                                                                                                                                                                                                                              | Delay (s)           (y/c)           0.18           0.18           0.51           0.51           0.51           0.51           0.51           0.51           0.51                                                                                                                                                                                                                               | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A                                                                                                                                                                                                                                                                                                                                                           | Approach Move<br>South East Thri<br>North East LL<br>Road (NE) Rit<br>North West Lat<br>Road (NW) Thri                                                                                                                                                                                                                                                                                                                                                                                                            | ment Demand<br>(veh/h)<br>pugh 62<br>ght 20<br>oft 118<br>ght 1<br>eft 3                                                                                                                                                                                                    | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4                                                                                                                                                                                                                                                                                          | y (s)         Queue (m)           6         2           6         2           9         4           1         4.9                                                                                                                                                                        | I) Service<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                                                | Approach M<br>East Road (E)                                                                                                                                                                                             |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach Moveme<br>Pestells Lane Left<br>(SE) Right<br>Pestells Lane Left<br>(N) Right<br>URA Access Left<br>(SW) Right                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112                                                                                                                                                                                                       | Utration         Delay (s)           (v/c)         0           0.18         5.6           0.18         9           0.51         6.2           0.51         9.7           0.30         4.7           0.30         9.2           0.51         7.7                                                                                                                                                | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           15         LOS A           29.5         LOS A           15         LOS A           29.5         LOS A                                                                                                                                                                                                                                           | Approach Move<br>South East Thr<br>Road (SE) Ri<br>North East LL<br>Road (NE) Ri<br>North West LL<br>Road (NW) Thr                                                                                                                                                                                                                                                                                                                                                                                                | Demand<br>(veh/h)           pugh         62           ght         20           off         118           ght         1           off         389                                                                                                                            | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4           0.13         4                                                                                                                                                                                                                                                                 | y (s)         Queue (m)           6         2           6         2           9         4           1         4.9           4         4.9           3         4.9                                                                                                                        | LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                                            | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)<br>Intersection                                                                                                                                           |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left           (SW)         Right           Intersection         All                                                                                                                                                                                                                                                                                                                         | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112           A Peak Hour         Demand<br>(veh/h)         De<br>Sa                                                                                                                                      | utration         Delay (s)           (v(c)         0.18         5.6           0.81         9         0.51         6.2           0.51         9.7         0.30         4.7           0.30         9.2         0.51         7.7           gree of<br>uration         Delay (s)         Delay (s)                                                                                                 | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A                                                                                                                                                                                                                                                                                                                                                           | Approach Move<br>South East Thr<br>Road (SE) Ri<br>North East Lu<br>Road (NE) Ri<br>North West Lu<br>Road (NW) Thr<br>Intersection A                                                                                                                                                                                                                                                                                                                                                                              | ment Demand<br>(veh/h)<br>bugh 62<br>ght 20<br>fit 118<br>ght 1<br>fit 3<br>sugh 185<br>II 389<br>PM Peak Hour                                                                                                                                                              | Saturation<br>(v/c)         Dela           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4           0.13         4           Degree of<br>Saturation         Dela                                                                                                                                                                                                                  | Y (s)         Queue (m)           6         2           6         2           9         4           1         4.9           3         4.9                                                                                                                                                | )) Service<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                              | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)<br>Intersection                                                                                                                                           |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left           (SW)         Right           Intersection         All           Node 20592 Year 2041 PM                                                                                                                                                                                                                                                                                       | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112           A Peak Hour         Demand<br>(veh/h)         De<br>Sa                                                                                                                                      | utration         Delay (s)           (v/c)         0.18         5.6           0.18         9         0.51         6.2           0.51         9.7         0.30         4.7           0.30         9.2         0.51         7.7           gree of         100         100         100                                                                                                            | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           15         LOS A           29.5         LOS A           95         LOS A           15         LOS A           29.5         LOS A           95         LOS A                                                                                                                                                                                     | Approach         Move           South East         Three           Road (SE)         Rith           North East         Lu           Road (NE)         Rith           North West         Lu           Road (NE)         Rith           North West         Lu           Road (NW)         Three           Intersection         A           Node 21825 Year 2041         Move                                                                                                                                        | ment Demand<br>(veh/h)<br>ugh 62<br>bft 20<br>fft 118<br>pht 1<br>fft 3<br>ugh 185<br>JI 389<br>PM Peak Hour                                                                                                                                                                | Saturation<br>(vic)         Dela           0.05         3           0.05         3           0.05         3           0.11         3           0.13         4           0.13         4           0.13         4           Degree of<br>Saturation<br>(v/c)         Dela                                                                                                                                                                                | y (s)         Queue (m)           6         2           6         2           9         4           1         4.9           4         4.9           3         4.9                                                                                                                        | )) Service<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A                                              | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)<br>Intersection<br>Node 21807 Year 20<br>Approach M                                                                                                       |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach     Moveme       Pestells Lane     Left       (SE)     Right       Pestells Lane     Left       (N)     Right       URA Access     Left       (SW)     Right       Intersection     All       Node 20592 Year 2041 PM       Approach     Moveme       Pestells Lane     Left       (SE)     Right                                                                                                                                                                                                                                                                           | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112           M Peak Hour         Demand<br>(veh/h)         De<br>Sa           ent         Demand<br>(veh/h)         De<br>Sa           :         252                                                     | utration         Delay (s)           (V/c)         0.18           0.18         9           0.51         6.2           0.51         9.7           0.30         4.7           0.30         9.2           0.51         7.7           gree of<br>(V/c)         Delay (s)           0.43         5.7                                                                                                | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           15         LOS A           95%/ile         Level of           Queue (m)         Service           23.9         LOS A                                                                                                                                                                                                                            | Approach         Move           South East         Thrr           Road (SE)         Ri           North East         Lu           Road (NE)         Ri           North West         Lu           Road (NW)         Three           Intersection         A           Node 21825 Year 2041         Move           South East         Three           Road (SE)         Ri                                                                                                                                            | Demand<br>(veh/h)           pugh         62           ght         20           fft         118           ght         1           ugh         83           PM Peak         Hour           ment         Demand<br>(veh/h)           pugh         131           pht         39 | Saturation<br>(v(c)         Dela           0.05         3           0.05         3           0.11         3           0.11         8           0.13         4           0.13         4           0.13         4           0.13         4           Degree of<br>Saturation<br>(v/c)         Dela           0.10         3           0.10         7                                                                                                     | y (s)         Queue (m           6         2           6         2           9         4           1         4.9           4         4.9           3         4.9           y (s)         95%/ile<br>Queue (m           6         4.1                                                     | )) Service<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>LOS A<br>Los A<br>LOS A<br>LOS A                   | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)<br>Intersection<br>Node 21807 Year 20                                                                                                                     |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left           (SW)         Right           Intersection         All           Node 20592 Year 2041 PM         Moveme           Pestells Lane         Left           (SE)         Right           Lesset         Left           Lesset         Left           Lesset         Left           (SE)         Right                                                                               | Demand<br>(veh/h)         De<br>Sa           65         120           313         12           119         119           1112         1112           A Peak Hour         Demand<br>(veh/h)         De<br>Sa           ent         Demand<br>(veh/h)         De<br>Sa           231         252         153                                        | utration         Delay (s)           (v/c)         0.18           0.18         9           0.51         6.2           0.51         9.7           0.30         4.7           0.30         9.2           0.51         7.7           gree of<br>turation         Delay (s)           0.43         5.7           0.43         5.5                                                                  | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           15         LOS A           29.5         LOS A           95%//le         Level of           23.9         LOS A           23.9         LOS A           23.9         LOS A           16.9         LOS A           LOS A         LOS A                                                                                                              | Approach         Move           South East         Three           Road (SE)         Rite           North East         LL           Road (NE)         Rite           North West         LL           Road (NE)         Rite           North West         LL           Road (NW)         Three           Intersection         A           Node 21825 Year 2041         Move           South East         Three           Road (SE)         Move           South East         Three           North East         LL | Demand<br>(veh/h)           Jugh         62           ght         20           ff         118           ght         1           off         185           JI         389           PM Peak Hour                                                                             | Saturation<br>(v(c)         Dela           0.05         3           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4           0.13         4           0.13         4           0.13         4           0.13         0.10           0.10         3           0.10         3           0.10         7           0.05         3                                                      | y (s)         Queue (m           6         2           6         2           9         4           11         4.9           14         4.9           33         4.9           y (s)         95%/ile<br>Queue (m)           6         4.1           6         4.1           2         1.7 | )) Service<br>LOS A<br>LOS A          | Approach M<br>East Road (E)<br>North Road(N)<br>West Road (W)<br>Intersection<br>Node 21807 Year 20<br>Approach M                                                                                                       |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left           (SW)         Right           Intersection         All           Node 20592 Year 2041 PM         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112           M Peak Hour         0emand<br>(veh/h)         De<br>Sa           ant         0emand<br>(veh/h)         Da           231         252         153           :         212         212         | utration         Delay (s)           (v/c)         0.18         5.6           0.18         9         0.51           0.51         9.7         0.30           0.30         4.7         0.30           0.51         7.7         0.30           gree of (v/c)         Delay (s)         0.43           0.43         5.7         0.43         9.2           0.33         5.5         0.33         9 | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           29.5         LOS A           15         LOS A           29.5         LOS A           29.6         LOS A           23.9         LOS A           16.9         LOS A           16.9         LOS A | Approach         Move           South East         Thr           Road (SE)         Ri           North East         Lic           Road (NE)         Ri           North West         Lic           Road (NW)         Thr           Intersection         A           Node 21825 Year         2041           Approach         Move           South East         Thr           Road (SE)         Ri           North East         Lic           Road (NE)         Ri                                                    | Demand<br>(veh/h)           ough         62           ght         20           off         118           ght         3           ugh         185           II         389           PM Peak Hour                                                                            | Saturation<br>(v/c)         Delation           0.05         3           0.05         3           0.05         7           0.11         3           0.13         4           0.13         4           0.13         4           0.13         4           Degree of<br>Saturation<br>(v/c)         Delation           0.10         3           0.10         3           0.10         3           0.05         7                                           | y (s)         Queue (m           6         2           9         4           1         4.9           3         4.9           y (s)         95%/ale<br>Queue (m           6         4.1           6         4.1           5         1.7                                                   | )) Service<br>LOS A<br>LOS A | Approach     M       East Road (E)     1       North Road(N)     1       West Road (W)     1       Intersection     1       Node 21807 Year 20       Approach     M       East Road (E)     1       North Road(N)     1 |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                         | Approach         Moveme           Pestells Lane         Left           (SE)         Right           Pestells Lane         Left           (N)         Right           URA Access         Left           (SW)         Right           Intersection         All           Node 20592 Year 2041 PM         Moveme           Pestells Lane         Left           (SE)         Right           Lesset         Left           Lesset         Left           Lesset         Left           (SE)         Right                                                                               | Demand<br>(veh/h)         De<br>Sa           65         120           313         241           119         254           1112         1112           M Peak Hour         De<br>Sa           ent         Demand<br>(veh/h)         De<br>Sa           231         231           :         252           153         212           138         212 | utration         Delay (s)           (v/c)         0.18           0.18         9           0.51         6.2           0.51         9.7           0.30         4.7           0.30         9.2           0.51         7.7           gree of<br>turation         Delay (s)           0.43         5.7           0.43         5.5                                                                  | Queue (m)         Service           8         LOS A           8         LOS A           29.5         LOS A           15         LOS A           15         LOS A           29.5         LOS A           95%//le         Level of           23.9         LOS A           23.9         LOS A           23.9         LOS A           16.9         LOS A           LOS A         LOS A                                                                                                              | Approach     Move       South East     Thri       North East     Lu       Road (SE)     Rait       North East     Lu       Road (NE)     Rait       North West     Lu       Road (NW)     Thri       Intersection     A       Node 21825 Year 2041     Move       Approach     Move       South East     Thri       Road (SE)     Rait       North East     Lu       Road (NE)     Rait       North West     Lu                                                                                                   | Demand<br>(veh/h)           Jugh         62           ght         20           ff         118           ght         1           off         185           JI         389           PM Peak Hour                                                                             | Saturation<br>(v(c)         Dela<br>3           0.05         3           0.05         3           0.05         7           0.11         8           0.13         4           0.13         4           0.13         4           0.13         4           0.13         0           Saturation<br>(v(c)         Dela<br>0.10           0.10         3           0.05         3           0.05         3           0.05         7           0.07         4 | y (s)         Queue (m           6         2           6         2           9         4           11         4.9           14         4.9           33         4.9           y (s)         95%/ile<br>Queue (m)           6         4.1           6         4.1           2         1.7 | )) Service<br>LOS A<br>LOS A          | Approach     M       East Road (E)     1       North Road(N)     1       West Road (W)     1       Intersection     1       Node 21807 Year 20       Approach     M       East Road (E)     1                           |



|   | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|---|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|   | Through  | 159               | 0.10                             | 4.3       | 4.2                 | LOS A               |
|   | Right    | 3                 | 0.10                             | 8.5       | 4.2                 | LOS A               |
| ` | Left     | 6                 | 0.01                             | 4.1       | 0.4                 | LOS A               |
| ' | Right    | 8                 | 0.01                             | 8.5       | 0.4                 | LOS A               |
| ) | Left     | 9                 | 0.08                             | 4.1       | 2.8                 | LOS A               |
| ' | Through  | 114               | 0.08                             | 4.3       | 2.8                 | LOS A               |
|   | All      | 300               | 0.10                             | 4.5       | 4.2                 | LOS A               |

| ar | 2041 | PM | Peak | Hour |
|----|------|----|------|------|
|    |      |    |      |      |

|    | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| 、  | Through  | 134               | 0.09                             | 4.3       | 3.6                 | LOS A               |
| )  | Right    | 4                 | 0.09                             | 8.5       | 3.6                 | LOS A               |
| •  | Left     | 6                 | 0.01                             | 4.3       | 0.4                 | LOS A               |
| )  | Right    | 6                 | 0.01                             | 8.7       | 0.4                 | LOS A               |
| ~  | Left     | 14                | 0.10                             | 4.1       | 3.7                 | LOS A               |
| /) | Through  | 145               | 0.10                             | 4.3       | 3.7                 | LOS A               |
|    | All      | 309               | 0.10                             | 4.5       | 3.7                 | LOS A               |

#### Proposed Layout: Distributor Roundabouts

#### Intersection Performance - Annual Average School Term



Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows: - the degree of saturation for a particular movement is between 0.70 and 0.85; and - the 95th percentile queue length is ±10m the length of the approach to the following intersection.

Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows: - the degree of saturation for any intersection movement exceeds 0.85; and -the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the following intersection, or exceeds 500m for a continuous lane.

#### Design Years

The design year is 2041.

#### Model Description

The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST).

Circulating width and central island radius geometry in accordance with Distributor Roundabouts.

#### Key Findings

The intersection remains within Degree of Saturation (DoS) limits in all scenarios.

A Level of Service (LoS) of 'A' is consistent within all scenarios.



| Node 21693 Yea          | ar 2041 AM Pea | ak Hour           |                                  |           |                     |                     |
|-------------------------|----------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Approach                | Movement       | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
| Abornothyo              | Left           | 1                 | 0.00                             | 4.4       | 0.1                 | LOS A               |
| Abernethys<br>Lane (SE) | Through        | 1                 | 0.00                             | 7.6       | 0.1                 | LOS A               |
| Lane (SE)               | Right          | 1                 | 0.00                             | 9.5       | 0.1                 | LOS A               |
|                         | Left           | 1                 | 0.01                             | 3.4       | 0.4                 | LOS A               |
| East Road (E)           | Through        | 16                | 0.01                             | 6.5       | 0.4                 | LOS A               |
|                         | Right          | 1                 | 0.01                             | 7.4       | 0.4                 | LOS A               |
|                         | Left           | 1                 | 0.00                             | 2.6       | 0.1                 | LOS A               |
| North Road (N)          | Through        | 1                 | 0.00                             | 2.7       | 0.1                 | LOS A               |
|                         | Right          | 1                 | 0.00                             | 7.8       | 0.1                 | LOS A               |
|                         | Left           | 1                 | 0.01                             | 4.4       | 0.3                 | LOS A               |
| North West<br>Road (NW) | Through        | 9                 | 0.01                             | 3.9       | 0.3                 | LOS A               |
|                         | Right          | 1                 | 0.01                             | 4.3       | 0.3                 | LOS A               |
| Intersection            | All            | 36                | 0.01                             | 5.5       | 0.4                 | LOS A               |

| Node 21693 Year 2041 PM Peak Hour |          |                   |                                  |           |                     |                     |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |
| Abernethys                        | Left     | 1                 | 0.00                             | 4.3       | 0.1                 | LOS A               |  |
| Lane (SE)                         | Through  | 1                 | 0.00                             | 7.5       | 0.1                 | LOS A               |  |
| Lane (SE)                         | Right    | 1                 | 0.00                             | 9.4       | 0.1                 | LOS A               |  |
|                                   | Left     | 1                 | 0.01                             | 3.4       | 0.3                 | LOS A               |  |
| East Road (E)                     | Through  | 9                 | 0.01                             | 6.5       | 0.3                 | LOS A               |  |
|                                   | Right    | 1                 | 0.01                             | 7.4       | 0.3                 | LOS A               |  |
|                                   | Left     | 1                 | 0.00                             | 2.7       | 0.1                 | LOS A               |  |
| North Road (N)                    | Through  | 1                 | 0.00                             | 2.7       | 0.1                 | LOS A               |  |
|                                   | Right    | 1                 | 0.00                             | 7.9       | 0.1                 | LOS A               |  |
| North West                        | Left     | 1                 | 0.01                             | 4.4       | 0.4                 | LOS A               |  |
| Road (NW)                         | Through  | 15                | 0.01                             | 3.9       | 0.4                 | LOS A               |  |
|                                   | Right    | 1                 | 0.01                             | 4.3       | 0.4                 | LOS A               |  |
| Intersection                      | All      | 35                | 0.01                             | 5.1       | 0.4                 | LOS A               |  |

| Approach       | Movement       | Demano  |
|----------------|----------------|---------|
| Node 21782 Yea | ar 2041 AM Pea | ak Hour |
|                |                |         |

| Approach       | Movement | (veh/h) |
|----------------|----------|---------|
| East Road (E)  | Through  | 7       |
| East Roau (E)  | Right    | 1       |
| North Road (N) | Left     | 1       |
| North Noad (N) | Right    | 1       |
| West Road (W)  | Left     | 2       |
| West Road (W)  | Through  | 13      |
| Intersection   | All      | 25      |

| Node 21782 Year 2041 PM Peak Hour |                                                                  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------|--|--|--|--|
| Movement                          | Demand<br>(veh/h)                                                |  |  |  |  |
| Through                           | 11                                                               |  |  |  |  |
| Right                             | 1                                                                |  |  |  |  |
| Left                              | 1                                                                |  |  |  |  |
| Right                             | 2                                                                |  |  |  |  |
| Left                              | 1                                                                |  |  |  |  |
| Through                           | 4                                                                |  |  |  |  |
| All                               | 20                                                               |  |  |  |  |
|                                   | Movement<br>Through<br>Right<br>Left<br>Right<br>Left<br>Through |  |  |  |  |



| Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------------------------|-----------|---------------------|---------------------|
| 0.01                             | 4         | 0.2                 | LOS A               |
| 0.01                             | 8.2       | 0.2                 | LOS A               |
| 0.00                             | 3.5       | 0.1                 | LOS A               |
| 0.00                             | 7.9       | 0.1                 | LOS A               |
| 0.01                             | 4         | 0.3                 | LOS A               |
| 0.01                             | 4.3       | 0.3                 | LOS A               |
| 0.01                             | 4.5       | 0.3                 | LOS A               |

| Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------------------------|-----------|---------------------|---------------------|
| 0.01                             | 4         | 0.3                 | LOS A               |
| 0.01                             | 8.2       | 0.3                 | LOS A               |
| 0.00                             | 3.4       | 0.1                 | LOS A               |
| 0.00                             | 7.8       | 0.1                 | LOS A               |
| 0.00                             | 4         | 0.1                 | LOS A               |
| 0.00                             | 4.3       | 0.1                 | LOS A               |
| 0.01                             | 4.7       | 0.3                 | LOS A               |



#### Design Years

The design year is 2041.

#### Model Description

The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST).

Circulating width and central island radius geometry in accordance with collector road roundabouts.

#### Key Findings

The intersection remains within Degree of Saturation (DoS) limits in all scenarios.

A Level of Service (LoS) of 'A' is consistent within all scenarios.

| Approach                   | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                            | Left     | 5                 | 0.09                             | 3.6       | 3.6                 | LOS A               |
| South Road (S)             | Through  | 72                | 0.09                             | 3.7       | 3.6                 | LOS A               |
|                            | Right    | 54                | 0.09                             | 8.9       | 3.6                 | LOS A               |
| East Collector             | Left     | 68                | 0.08                             | 2.8       | 3                   | LOS A               |
|                            | Through  | 18                | 0.08                             | 3.3       | 3                   | LOS A               |
| Road (E)                   | Right    | 5                 | 0.08                             | 7.8       | 3                   | LOS A               |
|                            | Left     | 8                 | 0.14                             | 3.5       | 5.3                 | LOS A               |
| North Road (N)             | Through  | 172               | 0.14                             | 3.7       | 5.3                 | LOS A               |
|                            | Right    | 1                 | 0.14                             | 8.7       | 5.3                 | LOS A               |
| West Collector             | Left     | 1                 | 0.03                             | 3.4       | 1.1                 | LOS A               |
| West Collector<br>Road (W) | Through  | 24                | 0.03                             | 3.7       | 1.1                 | LOS A               |
|                            | Right    | 12                | 0.03                             | 8.6       | 1.1                 | LOS A               |
| Intersection               | All      | 440               | 0.14                             | 4.4       | 5.3                 | LOS A               |

on Performance - Annual Average Scho

#### Node 21699 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 6                 | 0.14                             | 3.7       | 5.8                 | LOS A               |
| South Road (S) | Through  | 132               | 0.14                             | 3.8       | 5.8                 | LOS A               |
|                | Right    | 66                | 0.14                             | 9         | 5.8                 | LOS A               |
| East Collector | Left     | 67                | 0.08                             | 2.4       | 3.1                 | LOS A               |
| Road (E)       | Through  | 28                | 0.08                             | 2.9       | 3.1                 | LOS A               |
| Road (L)       | Right    | 7                 | 0.08                             | 7.3       | 3.1                 | LOS A               |
|                | Left     | 7                 | 0.08                             | 3.5       | 2.9                 | LOS A               |
| North Road (N) | Through  | 94                | 0.08                             | 3.7       | 2.9                 | LOS A               |
|                | Right    | 1                 | 0.08                             | 8.7       | 2.9                 | LOS A               |
| West Collector | Left     | 1                 | 0.02                             | 3.8       | 0.8                 | LOS A               |
| Road (W)       | Through  | 22                | 0.02                             | 4.1       | 0.8                 | LOS A               |
|                | Right    | 4                 | 0.02                             | 9         | 0.8                 | LOS A               |
| Intersection   | All      | 437               | 0.14                             | 4.4       | 5.8                 | LOS A               |

| Node 21588 Yea             | r 2041 AM Peal | k Hour            |                                  |           |                     |                     |
|----------------------------|----------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Approach                   | Movement       | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|                            | Left           | 3                 | 0.02                             | 2.6       | 0.6                 | LOS A               |
| South Road (S)             | Through        | 8                 | 0.02                             | 3         | 0.6                 | LOS A               |
|                            | Right          | 11                | 0.02                             | 7.6       | 0.6                 | LOS A               |
| East Collector             | Left           | 3                 | 0.06                             | 3.9       | 2.4                 | LOS A               |
| Road (E)                   | Through        | 71                | 0.06                             | 4.1       | 2.4                 | LOS A               |
| Roau (E)                   | Right          | 4                 | 0.06                             | 9.2       | 2.4                 | LOS A               |
|                            | Left           | 13                | 0.10                             | 3.9       | 3.9                 | LOS A               |
| North Road (N)             | Through        | 95                | 0.10                             | 4         | 3.9                 | LOS A               |
|                            | Right          | 28                | 0.10                             | 9.2       | 3.9                 | LOS A               |
| West Collector<br>Road (W) | Left           | 19                | 0.07                             | 3.4       | 2.6                 | LOS A               |
|                            | Through        | 81                | 0.07                             | 3.6       | 2.6                 | LOS A               |
|                            | Right          | 1                 | 0.07                             | 8.7       | 2.6                 | LOS A               |
| Intersection               | All            | 337               | 0.10                             | 4.5       | 3.9                 | LOS A               |

#### Node 21588 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 6                 | 0.03                             | 2.7       | 0.9                 | LOS A               |
| South Road (S) | Through  | 17                | 0.03                             | 3.1       | 0.9                 | LOS A               |
|                | Right    | 9                 | 0.03                             | 7.7       | 0.9                 | LOS A               |
| East Collector | Left     | 4                 | 0.08                             | 3.6       | 3.1                 | LOS A               |
| Road (E)       | Through  | 96                | 0.08                             | 3.8       | 3.1                 | LOS A               |
| Road (E)       | Right    | 7                 | 0.08                             | 8.9       | 3.1                 | LOS A               |
|                | Left     | 6                 | 0.06                             | 3.8       | 2.1                 | LOS A               |
| North Road (N) | Through  | 46                | 0.06                             | 4         | 2.1                 | LOS A               |
|                | Right    | 23                | 0.06                             | 9.2       | 2.1                 | LOS A               |
| West Collector | Left     | 26                | 0.07                             | 3.5       | 2.8                 | LOS A               |
|                | Through  | 77                | 0.07                             | 3.6       | 2.8                 | LOS A               |
| Road (W)       | Right    | 1                 | 0.07                             | 8.8       | 2.8                 | LOS A               |
| Intersection   | All      | 320               | 0.08                             | 4.3       | 3.1                 | LOS A               |

| Node 21587 Year 2041 AM Peak Hour |          |                   |                                  |           |                     |                     |  |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |
| South Collector                   | Left     | 5                 | 0.07                             | 2.9       | 2.8                 | LOS A               |  |  |
| Road (S)                          | Through  | 73                | 0.07                             | 3.3       | 2.8                 | LOS A               |  |  |
| Roau (3)                          | Right    | 11                | 0.07                             | 7.8       | 2.8                 | LOS A               |  |  |
| East Collector                    | Left     | 32                | 0.13                             | 4.1       | 5.4                 | LOS A               |  |  |
| Road (E)                          | Through  | 59                | 0.13                             | 4.3       | 5.4                 | LOS A               |  |  |
| Road (E)                          | Right    | 72                | 0.13                             | 9.4       | 5.4                 | LOS A               |  |  |
|                                   | Left     | 108               | 0.19                             | 4.2       | 8.1                 | LOS A               |  |  |
| North Road (N)                    | Through  | 120               | 0.19                             | 4.4       | 8.1                 | LOS A               |  |  |
|                                   | Right    | 18                | 0.19                             | 9.5       | 8.1                 | LOS A               |  |  |
| West Collector                    | Left     | 14                | 0.09                             | 3.7       | 3.5                 | LOS A               |  |  |
| Road (W)                          | Through  | 93                | 0.09                             | 4         | 3.5                 | LOS A               |  |  |
| Road (W)                          | Right    | 6                 | 0.09                             | 8.9       | 3.5                 | LOS A               |  |  |
| Intersection                      | All      | 609               | 0.19                             | 5         | 8.1                 | LOS A               |  |  |

| lode 21587 Year 2041 PM Peak Hour |          |                   |                                  |           |                     |                     |  |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |
| South Collector                   | Left     | 9                 | 0.14                             | 3.4       | 5.9                 | LOS A               |  |  |
| Road (S)                          | Through  | 146               | 0.14                             | 3.8       | 5.9                 | LOS A               |  |  |
| Road (3)                          | Right    | 11                | 0.14                             | 8.4       | 5.9                 | LOS A               |  |  |
| East Collector                    | Left     | 35                | 0.18                             | 3.7       | 8                   | LOS A               |  |  |
| Road (E)                          | Through  | 95                | 0.18                             | 3.9       | 8                   | LOS A               |  |  |
| Road (L)                          | Right    | 126               | 0.18                             | 9         | 8                   | LOS A               |  |  |
|                                   | Left     | 103               | 0.13                             | 4.1       | 5.7                 | LOS A               |  |  |
| North Road (N)                    | Through  | 60                | 0.13                             | 4.3       | 5.7                 | LOS A               |  |  |
|                                   | Right    | 15                | 0.13                             | 9.4       | 5.7                 | LOS A               |  |  |
| West Collector                    | Left     | 18                | 0.09                             | 4.4       | 3.5                 | LOS A               |  |  |
| Road (W)                          | Through  | 76                | 0.09                             | 4.6       | 3.5                 | LOS A               |  |  |
| rtuad (W)                         | Right    | 3                 | 0.09                             | 9.6       | 3.5                 | LOS A               |  |  |
| Intersection                      | All      | 697               | 0.18                             | 5.2       | 8                   | LOS A               |  |  |

| lode 21750 Year 2041 AM Peak Hour |          |                   |                                  |           |                     |                     |  |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |
|                                   | Left     | 1                 | 0.05                             | 3.7       | 2                   | LOS A               |  |  |
| Bells Lane (S)                    | Through  | 79                | 0.05                             | 3.8       | 2                   | LOS A               |  |  |
|                                   | Right    | 1                 | 0.05                             | 8.9       | 2                   | LOS A               |  |  |
|                                   | Left     | 1                 | 0.01                             | 4         | 0.2                 | LOS A               |  |  |
| East Road (E)                     | Through  | 1                 | 0.01                             | 4.1       | 0.2                 | LOS A               |  |  |
|                                   | Right    | 6                 | 0.01                             | 9.3       | 0.2                 | LOS A               |  |  |
|                                   | Left     | 7                 | 0.09                             | 3.4       | 3.6                 | LOS A               |  |  |
| Bells Lane (N)                    | Through  | 146               | 0.09                             | 3.6       | 3.6                 | LOS A               |  |  |
|                                   | Right    | 2                 | 0.09                             | 8.7       | 3.6                 | LOS A               |  |  |
|                                   | Left     | 7                 | 0.01                             | 2.7       | 0.3                 | LOS A               |  |  |
| West Road (W)                     | Through  | 1                 | 0.01                             | 3         | 0.3                 | LOS A               |  |  |
|                                   | Right    | 1                 | 0.01                             | 7.7       | 0.3                 | LOS A               |  |  |
| Intersection                      | All      | 255               | 0.09                             | 3.8       | 3.6                 | LOS A               |  |  |

#### Node 21750 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 1                 | 0.10                             | 3.7       | 4                   | LOS A               |
| South Road (S) | Through  | 160               | 0.10                             | 3.9       | 4                   | LOS A               |
|                | Right    | 1                 | 0.10                             | 8.9       | 4                   | LOS A               |
|                | Left     | 1                 | 0.01                             | 3.6       | 0.2                 | LOS A               |
| East Road (E)  | Through  | 1                 | 0.01                             | 3.8       | 0.2                 | LOS A               |
|                | Right    | 6                 | 0.01                             | 8.9       | 0.2                 | LOS A               |
|                | Left     | 8                 | 0.05                             | 3.4       | 2                   | LOS A               |
| North Road (N) | Through  | 74                | 0.05                             | 3.6       | 2                   | LOS A               |
|                | Right    | 3                 | 0.05                             | 8.7       | 2                   | LOS A               |
|                | Left     | 6                 | 0.01                             | 3         | 0.2                 | LOS A               |
| West Road (W)  | Through  | 1                 | 0.01                             | 3.4       | 0.2                 | LOS A               |
|                | Right    | 1                 | 0.01                             | 8.1       | 0.2                 | LOS A               |
| Intersection   | All      | 264               | 0.10                             | 4         | 4                   | LOS A               |



#### Key Findings

The intersection remains within Degree of Saturation (DoS) limits in all scenarios.

A Level of Service (LoS) of 'A' is consistent within all scenarios.

| Intersection Performance - Annual Average School Te | r |
|-----------------------------------------------------|---|
| Node 21749 Year 2041 AM Peak Hour                   |   |

| Noue 21/49 fea | 2041 AMT Ca | (TIOUI            |                                  |           |                     |                     |
|----------------|-------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Approach       | Movement    | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|                | Left        | 8                 | 0.06                             | 3.7       | 2.1                 | LOS A               |
| Bells Lane (S) | Through     | 75                | 0.06                             | 3.8       | 2.1                 | LOS A               |
|                | Right       | 4                 | 0.06                             | 8.9       | 2.1                 | LOS A               |
|                | Left        | 24                | 0.02                             | 3.9       | 0.8                 | LOS A               |
| East Road (E)  | Through     | 2                 | 0.02                             | 4.1       | 0.8                 | LOS A               |
|                | Right       | 1                 | 0.02                             | 9.2       | 0.8                 | LOS A               |
|                | Left        | 1                 | 0.09                             | 2.3       | 3.5                 | LOS A               |
| Bells Lane (N) | Through     | 142               | 0.09                             | 2.7       | 3.5                 | LOS A               |
|                | Right       | 3                 | 0.09                             | 7.3       | 3.5                 | LOS A               |
|                | Left        | 4                 | 0.01                             | 2.6       | 0.3                 | LOS A               |
| West Road (W)  | Through     | 4                 | 0.01                             | 2.9       | 0.3                 | LOS A               |
|                | Right       | 1                 | 0.01                             | 7.6       | 0.3                 | LOS A               |
| Intersection   | All         | 271               | 0.09                             | 3.3       | 3.5                 | LOS A               |

#### Node 21749 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 17                | 0.11                             | 3.7       | 4.3                 | LOS A               |
| Bells Lane (S) | Through  | 156               | 0.11                             | 3.8       | 4.3                 | LOS A               |
|                | Right    | 8                 | 0.11                             | 8.9       | 4.3                 | LOS A               |
|                | Left     | 14                | 0.01                             | 3.6       | 0.5                 | LOS A               |
| East Road (E)  | Through  | 2                 | 0.01                             | 3.8       | 0.5                 | LOS A               |
|                | Right    | 1                 | 0.01                             | 8.9       | 0.5                 | LOS A               |
|                | Left     | 1                 | 0.05                             | 2.4       | 1.9                 | LOS A               |
| Bells Lane (N) | Through  | 68                | 0.05                             | 2.7       | 1.9                 | LOS A               |
|                | Right    | 4                 | 0.05                             | 7.4       | 1.9                 | LOS A               |
| West Road (W)  | Left     | 4                 | 0.02                             | 3         | 0.5                 | LOS A               |
|                | Through  | 5                 | 0.02                             | 3.3       | 0.5                 | LOS A               |
|                | Right    | 8                 | 0.02                             | 8         | 0.5                 | LOS A               |
| Intersection   | All      | 289               | 0.11                             | 3.9       | 4.3                 | LOS A               |

#### Node 21748 Year 2041 AM Peak Hour

| Approach       | Movement                                                                                                                                                       | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left                                                                                                                                                           | 86                | 0.18                             | 3.7       | 8.8                 | LOS A               |
| Bells Lane (S) | Through                                                                                                                                                        | 98                | 0.18                             | 3.8       | 8.8                 | LOS A               |
|                | Right                                                                                                                                                          | 124               | 0.18                             | 8.9       | 8.8                 | LOS A               |
|                | Left                                                                                                                                                           | 177               | 0.20                             | 6.5       | 8.8                 | LOS A               |
| East Road (E)  | Through                                                                                                                                                        | 1                 | 0.20                             | 6.7       | 8.8                 | LOS A               |
|                | Lane (S) Through S<br>Right 12<br>Left 17<br>Road (E) Through Right Left 17<br>Lane (N) Through 18<br>Right Left Left Left Left Left 17<br>Road (W) Through 18 | 3                 | 0.20                             | 11.8      | 8.8                 | LOS A               |
|                | Left                                                                                                                                                           | 3                 | 0.20                             | 5.8       | 8.8                 | LOS A               |
| Bells Lane (N) | Through                                                                                                                                                        | 185               | 0.20                             | 6.1       | 8.8                 | LOS A               |
|                | Right                                                                                                                                                          | 1                 | 0.20                             | 11.1      | 8.8                 | LOS A               |
|                | Left                                                                                                                                                           | 1                 | 0.28                             | 5.1       | 12.5                | LOS A               |
| West Road (W)  | Through                                                                                                                                                        | 2                 | 0.28                             | 5.2       | 12.5                | LOS A               |
|                | Right                                                                                                                                                          | 332               | 0.28                             | 10.3      | 12.5                | LOS A               |
| Intersection   | All                                                                                                                                                            | 1014              | 0.28                             | 7.5       | 12.5                | LOS A               |

#### Node 21748 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 176               | 0.31                             | 3.7       | 16.7                | LOS A               |
| Bells Lane (S) | Through  | 196               | 0.31                             | 3.8       | 16.7                | LOS A               |
|                | Right    | 164               | 0.31                             | 8.9       | 16.7                | LOS A               |
|                | Left     | 142               | 0.13                             | 4.6       | 5.4                 | LOS A               |
| East Road (E)  | Through  | 1                 | 0.13                             | 4.8       | 5.4                 | LOS A               |
|                | Right    | 4                 | 0.13                             | 9.9       | 5.4                 | LOS A               |
|                | Left     | 3                 | 0.10                             | 4.7       | 4                   | LOS A               |
| Bells Lane (N) | Through  | 103               | 0.10                             | 5         | 4                   | LOS A               |
|                | Right    | 1                 | 0.10                             | 10        | 4                   | LOS A               |
|                | Left     | 1                 | 0.15                             | 5.7       | 5.8                 | LOS A               |
| West Road (W)  | Through  | 1                 | 0.15                             | 5.9       | 5.8                 | LOS A               |
|                | Right    | 152               | 0.15                             | 11        | 5.8                 | LOS A               |
| Intersection   | All      | 944               | 0.31                             | 6.1       | 16.7                | LOS A               |

| Node 17335 Year 2041 AM Peak Hour |          |                   |                                  |           |                     |                     |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |
|                                   | Left     | 16                | 0.19                             | 4.1       | 8.1                 | LOS A               |  |
| Bells Lane (S)                    | Through  | 237               | 0.19                             | 4.3       | 8.1                 | LOS A               |  |
|                                   | Right    | 1                 | 0.19                             | 9.4       | 8.1                 | LOS A               |  |
| Abernethys Lane                   | Left     | 1                 | 0.02                             | 8.1       | 1                   | LOS A               |  |
|                                   | Through  | 8                 | 0.02                             | 8.3       | 1                   | LOS A               |  |
| (E)                               | Right    | 7                 | 0.02                             | 13.4      | 1                   | LOS A               |  |
|                                   | Left     | 9                 | 0.47                             | 4.1       | 29.6                | LOS A               |  |
| Bells Lane (N)                    | Through  | 611               | 0.47                             | 4.2       | 29.6                | LOS A               |  |
|                                   | Right    | 76                | 0.47                             | 9.3       | 29.6                | LOS A               |  |
|                                   | Left     | 65                | 0.11                             | 5         | 4.4                 | LOS A               |  |
| Abernethys Lane                   | Through  | 6                 | 0.11                             | 5.1       | 4.4                 | LOS A               |  |
| (W)                               | Right    | 54                | 0.11                             | 10.2      | 4.4                 | LOS A               |  |
| Intersection                      | Ali      | 1092              | 0.47                             | 5         | 29.6                | LOS A               |  |

| Approach               | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                        | Left     | 24                | 0.34                             | 4.2       | 16.6                | LOS A               |
| Bells Lane (S)         | Through  | 449               | 0.34                             | 4.4       | 16.6                | LOS A               |
|                        | Right    | 1                 | 0.34                             | 9.5       | 16.6                | LOS A               |
| Abernethys Lane        | Left     | 1                 | 0.02                             | 5.6       | 0.7                 | LOS A               |
|                        | Through  | 7                 | 0.02                             | 5.8       | 0.7                 | LOS A               |
| (E)                    | Right    | 9                 | 0.02                             | 10.9      | 0.7                 | LOS A               |
|                        | Left     | 7                 | 0.25                             | 3.8       | 13                  | LOS A               |
| Bells Lane (N)         | Through  | 311               | 0.25                             | 3.9       | 13                  | LOS A               |
|                        | Right    | 79                | 0.25                             | 9         | 13                  | LOS A               |
| Abornothic Long        | Left     | 77                | 0.10                             | 6.2       | 4.3                 | LOS A               |
| Abernethys Lane<br>(W) | Through  | 7                 | 0.10                             | 6.4       | 4.3                 | LOS A               |
|                        | Right    | 15                | 0.10                             | 11.5      | 4.3                 | LOS A               |
| Intersection           | All      | 988               | 0.34                             | 4.9       | 16.6                | LOS A               |

#### Node 21597 Year 2041 AM Peak Hour

| Node 21597 Year 2041 AM Peak Hour |          |                   |                                  |           |                     |                     |  |  |
|-----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|
| Approach                          | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |
|                                   | Left     | 24                | 0.20                             | 3.7       | 9.4                 | LOS A               |  |  |
| Bells Lane (S)                    | Through  | 271               | 0.20                             | 3.9       | 9.4                 | LOS A               |  |  |
|                                   | Right    | 34                | 0.20                             | 9         | 9.4                 | LOS A               |  |  |
|                                   | Left     | 75                | 0.11                             | 7.4       | 5.2                 | LOS A               |  |  |
| East Road (E)                     | Through  | 5                 | 0.11                             | 7.7       | 5.2                 | LOS A               |  |  |
|                                   | Right    | 1                 | 0.11                             | 12.4      | 5.2                 | LOS A               |  |  |
|                                   | Left     | 1                 | 0.50                             | 4.4       | 31.1                | LOS A               |  |  |
| Bells Lane (N)                    | Through  | 699               | 0.50                             | 4.5       | 31.1                | LOS A               |  |  |
|                                   | Right    | 8                 | 0.50                             | 9.6       | 31.1                | LOS A               |  |  |
|                                   | Left     | 11                | 0.07                             | 5         | 2.4                 | LOS A               |  |  |
| West Road (W)                     | Through  | 5                 | 0.07                             | 5.2       | 2.4                 | LOS A               |  |  |
|                                   | Right    | 55                | 0.07                             | 10.4      | 2.4                 | LOS A               |  |  |
| Intersection                      | All      | 1188              | 0.50                             | 5         | 31.1                | LOS A               |  |  |

#### Node 21597 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 46                | 0.36                             | 3.7       | 19.5                | LOS A               |
| South Road (S) | Through  | 496               | 0.36                             | 3.9       | 19.5                | LOS A               |
|                | Right    | 55                | 0.36                             | 9         | 19.5                | LOS A               |
| East Road (E)  | Left     | 42                | 0.05                             | 4.2       | 1.9                 | LOS A               |
|                | Through  | 6                 | 0.05                             | 4.6       | 1.9                 | LOS A               |
|                | Right    | 1                 | 0.05                             | 9.3       | 1.9                 | LOS A               |
|                | Left     | 1                 | 0.25                             | 4.1       | 11.6                | LOS A               |
| North Road (N) | Through  | 348               | 0.25                             | 4.3       | 11.6                | LOS A               |
|                | Right    | 6                 | 0.25                             | 9.4       | 11.6                | LOS A               |
|                | Left     | 11                | 0.04                             | 6.5       | 1.6                 | LOS A               |
| West Road (W)  | Through  | 7                 | 0.04                             | 6.6       | 1.6                 | LOS A               |
|                | Right    | 19                | 0.04                             | 11.8      | 1.6                 | LOS A               |
| Intersection   | All      | 1039              | 0.36                             | 4.5       | 19.5                | LOS A               |



The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 21589, 21692, 21696, 21695 and 21601 May 2020 version).

Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows: - the degree of saturation for a particular movement is between 0.70 and 0.85; and - the 95th percentile queue length is  $\pm 10m$  the length of the approach to the following intersection.

Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows: - the degree of saturation for any intersection movement exceeds 0.85; and -the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the following intersection, or exceeds 500m for a continuous lane.

Design Years The design year is 2041.

Model Description

The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST). Circulating width and central island radius geometry in accordance with collector road roundabouts.

Key Findings
The intersection remains within Degree of Saturation (DoS) limits in all scenarios.

A Level of Service (LoS) of 'A' is consistent within all scenarios.

| Approach                | Movement      | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|-------------------------|---------------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| A la sua stila va       | Left          | 66                | 0.06                             | 2.7       | 2.1                 | LOS A               |
| Abernethys<br>Lane (SE) | Through       | 3                 | 0.06                             | 3.1       | 2.1                 | LOS A               |
| Lane (SE)               | Right         | 1                 | 0.06                             | 7.6       | 2.1                 | LOS A               |
| Collector Road<br>(NE)  | Left          | 11                | 0.10                             | 3.7       | 3.6                 | LOS A               |
|                         | Through       | 115               | 0.10                             | 3.9       | 3.6                 | LOS A               |
|                         | Right         | 1                 | 0.10                             | 9         | 3.6                 | LOS A               |
|                         | Left          | 1                 | 0.02                             | 4.3       | 0.8                 | LOS A               |
| Abernethys              | Through       | 20                | 0.02                             | 4.4       | 0.8                 | LOS A               |
| Lane (NW)               | Right         | 8                 | 0.02                             | 9.6       | 0.8                 | LOS A               |
|                         | Left          | 11                | 0.09                             | 3.1       | 3.7                 | LOS A               |
| Collector Road          | Through       | 85                | 0.09                             | 3.4       | 3.7                 | LOS A               |
| (SW)                    | Right         | 56                | 0.09                             | 8.4       | 3.7                 | LOS A               |
| Intersection            | AII           | 378               | 0.10                             | 4.4       | 3.7                 | LOS A               |
| lode 21589 Yea          | r 2041 PM Pea |                   | Degree of                        |           | 05%(1)              | 1                   |
| Approach                | Movement      | Demand            | Saturation                       | Delay (s) | 95%ile              | Level of<br>Service |

| ripprouon      | moromoni | (veh/h) | (v/c) | 2014) (0) | Queue (m) | Service |
|----------------|----------|---------|-------|-----------|-----------|---------|
| Abernethys     | Left     | 68      | 0.06  | 2.6       | 2.3       | LOS A   |
| Lane (SE)      | Through  | 5       | 0.06  | 3         | 2.3       | LOS A   |
| Lane (SE)      | Right    | 2       | 0.06  | 7.6       | 2.3       | LOS A   |
| Collector Road | Left     | 1       | 0.08  | 3.7       | 2.9       | LOS A   |
| (NE)           | Through  | 101     | 0.08  | 3.9       | 2.9       | LOS A   |
|                | Right    | 1       | 0.08  | 9         | 2.9       | LOS A   |
| Abernethys     | Left     | 1       | 0.01  | 4.5       | 0.5       | LOS A   |
| Lane (NW)      | Through  | 2       | 0.01  | 4.6       | 0.5       | LOS A   |
| Lane (INVV)    | Right    | 14      | 0.01  | 9.7       | 0.5       | LOS A   |
| Collector Road | Left     | 18      | 0.12  | 3.2       | 5         | LOS A   |
| (SW)           | Through  | 116     | 0.12  | 3.4       | 5         | LOS A   |
| (300)          | Right    | 64      | 0.12  | 8.4       | 5         | LOS A   |
| Intersection   | All      | 394     | 0.12  | 4.5       | 5         | LOS A   |

#### Node 21692 Year 2041 AM Peak Hour

| Approach                         | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| A h a wa a thu sa                | Left     | 1                 | 0.05                             | 2.2       | 1.9                 | LOS A               |
| Abernethys<br>Lane (SE)          | Through  | 72                | 0.05                             | 2.6       | 1.9                 | LOS A               |
| Lane (SE)                        | Right    | 9                 | 0.05                             | 7.2       | 1.9                 | LOS A               |
|                                  | Left     | 16                | 0.02                             | 3.3       | 0.5                 | LOS A               |
| North North East<br>Road (NE)    | Through  | 2                 | 0.02                             | 3.5       | 0.5                 | LOS A               |
| Roau (NE)                        | Right    | 1                 | 0.02                             | 8.4       | 0.5                 | LOS A               |
| Abernethys                       | Left     | 1                 | 0.06                             | 3.2       | 2.2                 | LOS A               |
| Lane (NW)                        | Through  | 91                | 0.06                             | 3.4       | 2.2                 | LOS A               |
| Lane (NVV)                       | Right    | 1                 | 0.06                             | 8.5       | 2.2                 | LOS A               |
| South South<br>West Road<br>(SW) | Left     | 1                 | 0.00                             | 3.4       | 0.1                 | LOS A               |
|                                  | Through  | 1                 | 0.00                             | 3.6       | 0.1                 | LOS A               |
|                                  | Right    | 1                 | 0.00                             | 8.6       | 0.1                 | LOS A               |
| Intersection                     | All      | 197               | 0.06                             | 3.4       | 2.2                 | LOS A               |

| Approach                | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|-------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Abernethys              | Left     | 1                 | 0.06                             | 2.2       | 2.1                 | LOS A               |
| Lane (SE)               | Through  | 80                | 0.06                             | 2.6       | 2.1                 | LOS A               |
|                         | Right    | 14                | 0.06                             | 7.2       | 2.1                 | LOS A               |
| North North East        | Left     | 12                | 0.01                             | 3.2       | 0.4                 | LOS A               |
|                         | Through  | 1                 | 0.01                             | 3.4       | 0.4                 | LOS A               |
| Road (NE)               | Right    | 1                 | 0.01                             | 8.3       | 0.4                 | LOS A               |
| A la sua stila va       | Left     | 1                 | 0.05                             | 3.3       | 1.7                 | LOS A               |
| Abernethys<br>Lane (NW) | Through  | 67                | 0.05                             | 3.5       | 1.7                 | LOS A               |
| Lane (NVV)              | Right    | 1                 | 0.05                             | 8.5       | 1.7                 | LOS A               |
| West Road               | Left     | 1                 | 0.00                             | 3.4       | 0.1                 | LOS A               |
|                         | Through  | 1                 | 0.00                             | 3.7       | 0.1                 | LOS A               |
|                         | Right    | 1                 | 0.00                             | 8.7       | 0.1                 | LOS A               |
| Intersection            | All      | 181               | 0.06                             | 3.4       | 2.1                 | LOS A               |

| Approach               | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South East Road        | Left     | 7                 | 0.01                             | 3.9       | 0.3                 | LOS A               |
| (SE)                   | Through  | 1                 | 0.01                             | 4.1       | 0.3                 | LOS A               |
|                        | Right    | 1                 | 0.01                             | 9.1       | 0.3                 | LOS A               |
| Collector Road<br>(NE) | Left     | 1                 | 0.12                             | 3.2       | 4.6                 | LOS A               |
|                        | Through  | 188               | 0.12                             | 3.4       | 4.6                 | LOS A               |
|                        | Right    | 1                 | 0.12                             | 8.4       | 4.6                 | LOS A               |
| North West Road        | Left     | 1                 | 0.00                             | 4         | 0.1                 | LOS A               |
| (NW)                   | Through  | 1                 | 0.00                             | 4.2       | 0.1                 | LOS A               |
| (1400)                 | Right    | 1                 | 0.00                             | 9.3       | 0.1                 | LOS A               |
| Collector Road         | Left     | 1                 | 0.09                             | 3.7       | 3.8                 | LOS A               |
| (SW)                   | Through  | 151               | 0.09                             | 3.8       | 3.8                 | LOS A               |
| (377)                  | Right    | 8                 | 0.09                             | 8.9       | 3.8                 | LOS A               |
| Intersection           | All      | 363               | 0.12                             | 3.8       | 4.6                 | LOS A               |

| Approach               | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South East Road        | Left     | 13                | 0.01                             | 3.8       | 0.4                 | LOS A               |
|                        | Through  | 1                 | 0.01                             | 4.1       | 0.4                 | LOS A               |
| (SE)                   | Right    | 1                 | 0.01                             | 9.1       | 0.4                 | LOS A               |
| Collector Road         | Left     | 1                 | 0.11                             | 3.2       | 4.4                 | LOS A               |
| (NE)                   | Through  | 182               | 0.11                             | 3.4       | 4.4                 | LOS A               |
| (INE)                  | Right    | 1                 | 0.11                             | 8.4       | 4.4                 | LOS A               |
| North West Road        | Left     | 1                 | 0.00                             | 4.2       | 0.1                 | LOS A               |
| (NW)                   | Through  | 1                 | 0.00                             | 4.4       | 0.1                 | LOS A               |
| (1909)                 | Right    | 1                 | 0.00                             | 9.5       | 0.1                 | LOS A               |
| 0.11.1.1.0             | Left     | 2                 | 0.12                             | 3.7       | 5                   | LOS A               |
| Collector Road<br>(SW) | Through  | 198               | 0.12                             | 3.8       | 5                   | LOS A               |
|                        | Right    | 7                 | 0.12                             | 8.9       | 5                   | LOS A               |
| Intersection           | All      | 409               | 0.12                             | 3.8       | 5                   | LOS A               |

| Approach                | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|-------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South East Road<br>(SE) | Left     | 7                 | 0.02                             | 4         | 0.6                 | LOS A               |
|                         | Through  | 1                 | 0.02                             | 4.2       | 0.6                 | LOS A               |
|                         | Right    | 11                | 0.02                             | 9.3       | 0.6                 | LOS A               |
| Collector Road          | Left     | 13                | 0.13                             | 3.7       | 5.3                 | LOS A               |
|                         | Through  | 178               | 0.13                             | 3.9       | 5.3                 | LOS A               |
| (NE)                    | Right    | 6                 | 0.13                             | 9         | 5.3                 | LOS A               |
| North West Road         | Left     | 6                 | 0.02                             | 4.4       | 0.7                 | LOS A               |
|                         | Through  | 1                 | 0.02                             | 4.5       | 0.7                 | LOS A               |
| (NW)                    | Right    | 16                | 0.02                             | 9.6       | 0.7                 | LOS A               |
| Collector Road          | Left     | 7                 | 0.10                             | 3.7       | 4                   | LOS A               |
| (SW)                    | Through  | 142               | 0.10                             | 3.9       | 4                   | LOS A               |
|                         | Right    | 3                 | 0.10                             | 9         | 4                   | LOS A               |
| Intersection            | All      | 392               | 0.13                             | 4.4       | 5.3                 | LOS A               |

| Approach               | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------------------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South East Road        | Left     | 14                | 0.02                             | 4         | 0.8                 | LOS A               |
| (SE)                   | Through  | 1                 | 0.02                             | 4.2       | 0.8                 | LOS A               |
| (02)                   | Right    | 13                | 0.02                             | 9.2       | 0.8                 | LOS A               |
| Collector Road<br>(NE) | Left     | 13                | 0.12                             | 3.7       | 5.1                 | LOS A               |
|                        | Through  | 176               | 0.12                             | 3.9       | 5.1                 | LOS A               |
| (INE)                  | Right    | 7                 | 0.12                             | 9         | 5.1                 | LOS A               |
| North West Road        | Left     | 6                 | 0.01                             | 4.6       | 0.5                 | LOS A               |
| (NW)                   | Through  | 1                 | 0.01                             | 4.8       | 0.5                 | LOS A               |
| (1444)                 | Right    | 9                 | 0.01                             | 9.9       | 0.5                 | LOS A               |
| Collector Road         | Left     | 12                | 0.13                             | 3.7       | 5.5                 | LOS A               |
| (SW)                   | Through  | 188               | 0.13                             | 3.9       | 5.5                 | LOS A               |
|                        | Right    | 4                 | 0.13                             | 9         | 5.5                 | LOS A               |
| Intersection           | All      | 444               | 0.13                             | 4.3       | 5.5                 | LOS A               |

| Node 21601 Yea | Node 21601 Year 2041 AM Peak Hour |                   |                                  |           |                     |                     |  |  |  |  |
|----------------|-----------------------------------|-------------------|----------------------------------|-----------|---------------------|---------------------|--|--|--|--|
| Approach       | Movement                          | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |  |  |  |  |
| South East     | Left                              | 38                | 0.04                             | 5.1       | 1.5                 | LOS A               |  |  |  |  |
| Road (SE)      | Through                           | 2                 | 0.04                             | 5.3       | 1.5                 | LOS A               |  |  |  |  |
| Road (SE)      | Right                             | 1                 | 0.04                             | 10.5      | 1.5                 | LOS A               |  |  |  |  |
| Collector Road | Left                              | 1                 | 0.17                             | 4.6       | 7                   | LOS A               |  |  |  |  |
| (NE)           | Through                           | 196               | 0.17                             | 4.8       | 7                   | LOS A               |  |  |  |  |
| (INE)          | Right                             | 4                 | 0.17                             | 9.9       | 7                   | LOS A               |  |  |  |  |
| North West     | Left                              | 4                 | 0.13                             | 4.6       | 4.8                 | LOS A               |  |  |  |  |
| Road (NW)      | Through                           | 1                 | 0.13                             | 4.8       | 4.8                 | LOS A               |  |  |  |  |
| Roau (NVV)     | Right                             | 146               | 0.13                             | 9.8       | 4.8                 | LOS A               |  |  |  |  |
| Collector Road | Left                              | 66                | 0.14                             | 3.7       | 6.1                 | LOS A               |  |  |  |  |
| (SW)           | Through                           | 147               | 0.14                             | 3.8       | 6.1                 | LOS A               |  |  |  |  |
| (300)          | Right                             | 26                | 0.14                             | 8.9       | 6.1                 | LOS A               |  |  |  |  |
| Intersection   | All                               | 634               | 0.17                             | 5.9       | 7                   | LOS A               |  |  |  |  |

#### Node 21601 Year 2041 PM Peak Hour

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South East     | Left     | 35                | 0.04                             | 4.8       | 1.3                 | LOS A               |
| Road (SE)      | Through  | 3                 | 0.04                             | 5         | 1.3                 | LOS A               |
| Road (SE)      | Right    | 1                 | 0.04                             | 10.2      | 1.3                 | LOS A               |
| Collector Road | Left     | 1                 | 0.16                             | 4.4       | 6.6                 | LOS A               |
| (NE)           | Through  | 194               | 0.16                             | 4.5       | 6.6                 | LOS A               |
| (NL)           | Right    | 4                 | 0.16                             | 9.6       | 6.6                 | LOS A               |
| North West     | Left     | 3                 | 0.08                             | 4.9       | 3.1                 | LOS A               |
| Road (NW)      | Through  | 1                 | 0.08                             | 5.1       | 3.1                 | LOS A               |
| Road (NVV)     | Right    | 92                | 0.08                             | 10.1      | 3.1                 | LOS A               |
| Collector Road | Left     | 124               | 0.22                             | 3.7       | 9.8                 | LOS A               |
| (SW)           | Through  | 200               | 0.22                             | 3.8       | 9.8                 | LOS A               |
| (300)          | Right    | 39                | 0.22                             | 8.9       | 9.8                 | LOS A               |
| Intersection   | All      | 697               | 0.22                             | 5.2       | 9.8                 | LOS A               |

#### Proposed Layout: Collector Road Roundabouts

#### Model Development and Assessment Criteria

The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 21718 and 21717 May 2020 version).

Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows: - the degree of saturation for a particular movement is between 0.70 and 0.85; and - the 95th percentile queue length is ±10m the length of the approach to the following intersection.

Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows: - the degree of saturation for any intersection movement exceeds 0.85; and -the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the following intersection, or exceeds 500m for a continuous lane.

#### Design Years

The design year is 2041.

#### Model Description

The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST).

Circulating width and central island radius geometry in accordance with collector road roundabouts.

#### Key Findings

The intersection remains within Degree of Saturation (DoS) limits in all scenarios.

A Level of Service (LoS) of 'A' is consistent within all scenarios.



| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 3                 | 0.01                             | 3.9       | 0.4                 | LOS A               |
| South Road (S) | Right    | 12                | 0.01                             | 9.2       | 0.4                 | LOS A               |
| Collector Road | Left     | 9                 | 0.09                             | 3.2       | 3.3                 | LOS A               |
| (E)            | Through  | 138               | 0.09                             | 3.4       | 3.3                 | LOS A               |
| Collector Road | Through  | 202               | 0.13                             | 3.9       | 5.4                 | LOS A               |
| (W)            | Right    | 3                 | 0.13                             | 8.9       | 5.4                 | LOS A               |
| Intersection   | All      | 367               | 0.13                             | 3.9       | 5.4                 | LOS A               |

| Node 21718 Yea | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South Dood (S) | Left     | 3                 | 0.01                             | 4.4       | 0.4                 | LOS A               |
| South Road (S) | Right    | 8                 | 0.01                             | 9.7       | 0.4                 | LOS A               |
| Collector Road | Left     | 20                | 0.15                             | 3.2       | 6                   | LOS A               |
| (E)            | Through  | 239               | 0.15                             | 3.4       | 6                   | LOS A               |
| Collector Road | Through  | 180               | 0.11                             | 3.8       | 4.8                 | LOS A               |
| (W)            | Right    | 3                 | 0.11                             | 8.9       | 4.8                 | LOS A               |
| Intersection   | All      | 454               | 0.15                             | 3.7       | 6                   | LOS A               |

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|                | Left     | 1                 | 0.11                             | 4.5       | 4.2                 | LOS A               |
| South Road (S) | Through  | 135               | 0.11                             | 4.6       | 4.2                 | LOS A               |
| URA Access     | Through  | 149               | 0.17                             | 3.8       | 7.9                 | LOS A               |
| (N)            | Right    | 157               | 0.17                             | 8.9       | 7.9                 | LOS A               |
| Collector Road | Left     | 238               | 0.19                             | 3.1       | 8.2                 | LOS A               |
| (W)            | Right    | 1                 | 0.19                             | 8.2       | 8.2                 | LOS A               |
| Intersection   | All      | 681               | 0.19                             | 4.9       | 8.2                 | LOS A               |

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South Road (S) | Left     | 1                 | 0.14                             | 5.2       | 5.4                 | LOS A               |
|                | Through  | 153               | 0.14                             | 5.4       | 5.4                 | LOS A               |
| URA Access     | Through  | 158               | 0.25                             | 3.8       | 12.5                | LOS A               |
| (N)            | Right    | 284               | 0.25                             | 8.9       | 12.5                | LOS A               |
| Collector Road | Left     | 201               | 0.16                             | 3.2       | 7.2                 | LOS A               |
| (W)            | Right    | 1                 | 0.16                             | 8.3       | 7.2                 | LOS A               |
| Intersection   | AII      | 798               | 0.25                             | 5.8       | 12.5                | LOS A               |

| Approach       | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|----------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| South Dood (C) | Left     | 1                 | 0.14                             | 5.2       | 5.4                 | LOS A               |
| South Road (S) | Through  | 153               | 0.14                             | 5.4       | 5.4                 | LOS A               |
| URA Access     | Through  | 158               | 0.25                             | 3.8       | 12.5                | LOS A               |
| (N)            | Right    | 284               | 0.25                             | 8.9       | 12.5                | LOS A               |
| Collector Road | Left     | 201               | 0.16                             | 3.2       | 7.2                 | LOS A               |
| (W)            | Right    | 1                 | 0.16                             | 8.3       | 7.2                 | LOS A               |
| Intersection   | All      | 798               | 0.25                             | 5.8       | 12.5                | LOS A               |

| Proposed Layout: Collector Road Roundabouts                                                                                                                                                                                                                                                                                                                                | Intersection Performanc | e - Annual Ave   | rage School T      | erm                     |                    |                     |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------|-------------------------|--------------------|---------------------|----------------|
| Model Development and Assessment Criteria                                                                                                                                                                                                                                                                                                                                  |                         | Node 21899       |                    |                         | ane                |                     |                |
| The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 21899 May 2020 version).                                                                                                                                                                                                                                                                   |                         | Node 21899       |                    |                         | Bells Lan          |                     |                |
| Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows:<br>- the degree of saturation for a particular movement is between 0.70 and 0.85; and<br>- the 95th percentile queue length is ±10m the length of the approach to the following intersection.                                                                                |                         |                  |                    |                         |                    |                     |                |
| Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows:<br>- the degree of saturation for any intersection movement exceeds 0.85; and<br>-the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the<br>following intersection, or exceeds 500m for a continuous lane. |                         |                  |                    |                         | ł                  |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                            | Access -                | Bus, PaRural     |                    |                         |                    |                     |                |
| Design Years                                                                                                                                                                                                                                                                                                                                                               |                         |                  |                    | 2                       | 7.6                |                     |                |
| The design year is 2041.                                                                                                                                                                                                                                                                                                                                                   | -                       |                  |                    |                         | 101                |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                            |                         |                  |                    | 1                       | 1                  |                     |                |
| Model Description                                                                                                                                                                                                                                                                                                                                                          |                         |                  |                    |                         | ' /                |                     |                |
| The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST).                                                                                                                                                                                                                                                                           |                         |                  |                    | 1                       |                    |                     |                |
| Circulating width and central island radius geometry in accordance with collector road roundabouts.                                                                                                                                                                                                                                                                        |                         |                  |                    |                         |                    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                            |                         |                  |                    | Bells Lane              |                    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                            | Node 21899              | Year 2041 AM F   | Peak Hour          |                         |                    |                     |                |
| Key Findings                                                                                                                                                                                                                                                                                                                                                               | Approach                | Movement         | Demand             | Degree of<br>Saturation | Delay (s)          | 95%ile              | Level of       |
| The intersection remains within Degree of Saturation (DoS) limits in all scenarios.                                                                                                                                                                                                                                                                                        | Approach                | Movement         | (veh/h)            | (v/c)                   | Delay (3)          | Queue (m)           | Service        |
| A Level of Service (LoS) of 'A' is consistent within all scenarios.                                                                                                                                                                                                                                                                                                        | Bells Lane              | Left             | 172                | 0.32                    | 3.9                | 16.8                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | (S)                     | Through          | 305                | 0.32                    | 4.1                | 16.8                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Bells Lane<br>(N)       | Through<br>Pight | 778                | 0.58<br>0.58            | 4.7<br>9.7         | 42.8<br>42.8        | LOS A<br>LOS A |
|                                                                                                                                                                                                                                                                                                                                                                            | Access -                | Right<br>Left    | 52<br>22           | 0.58                    | 9.7<br>4.7         | 42.0                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Bus / Park              | Right            | 95                 | 0.11                    | 10                 | 4.3                 | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Intersectio             | All              | 1423               | 0.58                    | 5                  | 42.8                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Node 21899              | Year 2041 PM F   | Peak Hour          |                         |                    |                     |                |
|                                                                                                                                                                                                                                                                                                                                                                            |                         |                  | Demand             | Degree of Saturation    |                    | 95%ile              | Level of       |
|                                                                                                                                                                                                                                                                                                                                                                            | Approach                | Movement         | (veh/h)            | Saturation<br>(v/c)     | Delay (s)          | Queue (m)           |                |
|                                                                                                                                                                                                                                                                                                                                                                            | Bells Lane              | Left             | 87                 | 0.39                    | 3.8                | 23.3                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | (S)                     | Through          | 548                | 0.39                    | 3.9                | 23.3                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Bells Lane              | Through          | 392                | 0.33                    | 4.9                | 17.7                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | (N)                     | Right            | 19                 | 0.33                    | 10                 | 17.7                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Access -<br>Bus / Park  | Left             | 48                 | 0.24                    | 6.7                | 10.6                | LOS A          |
|                                                                                                                                                                                                                                                                                                                                                                            | Intersectio             | Right<br>All     | 169<br><b>1264</b> | 0.24<br><b>0.39</b>     | 11.9<br><b>5.5</b> | 10.6<br><b>23.3</b> | LOS A          |
| 1                                                                                                                                                                                                                                                                                                                                                                          | intersectio             | All              | 1204               | 0.59                    | 5.5                | 23.3                | LUJA           |





| nent | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|      | 1                 | 0.06                             | 3.5       | 2                   | LOS A               |
|      | 80                | 0.06                             | 3.5       | 2                   | LOS A               |
|      | 1                 | 0.06                             | 8.6       | 2                   | LOS A               |
|      | 1                 | 0.00                             | 4.2       | 0.1                 | LOS A               |
|      | 1                 | 0.00                             | 4         | 0.1                 | LOS A               |
|      | 3                 | 0.00                             | 9.5       | 0.1                 | LOS A               |
|      | 6                 | 0.08                             | 3.5       | 3.1                 | LOS A               |
|      | 116               | 0.08                             | 3.7       | 3.1                 | LOS A               |
|      | 13                | 0.08                             | 7.8       | 3.1                 | LOS A               |
|      | 21                | 0.02                             | 3.4       | 0.6                 | LOS A               |
|      | 1                 | 0.02                             | 7.8       | 0.6                 | LOS A               |
|      | 1                 | 0.02                             | 10        | 0.6                 | LOS A               |
|      | 245               | 0.08                             | 3.9       | 3.1                 | LOS A               |

| nent | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|------|-------------------|----------------------------------|-----------|---------------------|---------------------|
|      | 1                 | 0.07                             | 3.5       | 2.8                 | LOS A               |
|      | 108               | 0.07                             | 3.5       | 2.8                 | LOS A               |
|      | 1                 | 0.07                             | 8.6       | 2.8                 | LOS A               |
|      | 1                 | 0.01                             | 4.2       | 0.2                 | LOS A               |
|      | 1                 | 0.01                             | 4         | 0.2                 | LOS A               |
|      | 5                 | 0.01                             | 9.4       | 0.2                 | LOS A               |
|      | 3                 | 0.07                             | 3.5       | 2.7                 | LOS A               |
|      | 96                | 0.07                             | 3.7       | 2.7                 | LOS A               |
|      | 18                | 0.07                             | 7.8       | 2.7                 | LOS A               |
|      | 20                | 0.02                             | 3.6       | 0.6                 | LOS A               |
|      | 1                 | 0.02                             | 7.9       | 0.6                 | LOS A               |
|      | 1                 | 0.02                             | 10.1      | 0.6                 | LOS A               |
|      | 257               | 0.07                             | 4.1       | 2.8                 | LOS A               |
|      |                   |                                  |           |                     |                     |

### Proposed Layout: Collector Road Roundabouts Intersection Performance - Annual Average School Term Model Development and Assessment Criteria AN Node 17334 The future traffic model obtained from the Shoalhaven Kiama TRACKS model (Nodes 17334 May 2020 version). Intersection capacity mechanisms are indicated by dark grey shading, and outlined as follows: - the degree of saturation for a particular movement is between 0.70 and 0.85; and - the 95th percentile queue length is ±10m the length of the approach to the following intersection. Intersection over-capacity mechanisms are indicated by dark grey shading and red font, and outlined as follows: - the degree of saturation for any intersection movement exceeds 0.85; and -the 95th percentile queue length exceeds 10m beyond the length of the available approach length to the following intersection, or exceeds 500m for a continuous lane. 24 Design Years The design year is 2041. <del>\</del>101 7.6 Model Description The traffic volumes represent the AM and PM peak hour for the Annual Average School Term (AAST). 24 Circulating width and central island radius geometry in accordance with collector road roundabouts. Key Findings The intersection remains within Degree of Saturation (DoS) limits in all scenarios. A Level of Service (LoS) of 'A' is consistent within all scenarios.

#### Node 17334 Year 2041 AM Peak Hour

| Approach    | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | Delay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|-------------|----------|-------------------|----------------------------------|-----------|---------------------|---------------------|
| Bells Lane  | Left     | 22                | 0.16                             | 3.8       | 7.6                 | LOS A               |
|             | Through  | 252               | 0.16                             | 3.8       | 7.6                 | LOS A               |
| (S)         | Right    | 7                 | 0.16                             | 7.8       | 7.6                 | LOS A               |
| North Cost  | Left     | 14                | 0.02                             | 7.2       | 0.8                 | LOS A               |
| North East  | Through  | 1                 | 0.02                             | 7.6       | 0.8                 | LOS A               |
| Road (NE)   | Right    | 1                 | 0.02                             | 13.8      | 0.8                 | LOS A               |
| Della Lana  | Left     | 1                 | 0.43                             | 4.1       | 25.4                | LOS A               |
| Bells Lane  | Through  | 664               | 0.43                             | 4.1       | 25.4                | LOS A               |
| (N)         | Right    | 1                 | 0.43                             | 8.1       | 25.4                | LOS A               |
|             | Left     | 1                 | 0.03                             | 4.7       | 1                   | LOS A               |
| South West  | Through  | 1                 | 0.03                             | 5         | 1                   | LOS A               |
| Road (SW)   | Right    | 31                | 0.03                             | 11.3      | 1                   | LOS A               |
| Intersectio |          |                   |                                  |           |                     |                     |
| n           | All      | 996               | 0.43                             | 4.3       | 25.4                | LOS A               |

#### Node 17334 Year 2041 PM Peak Hour

| Approach    | Movement | Demand<br>(veh/h) | Degree of<br>Saturation<br>(v/c) | De |
|-------------|----------|-------------------|----------------------------------|----|
| Bells Lane  | Left     | 23                | 0.29                             |    |
| (S)         | Through  | 474               | 0.29                             |    |
| (3)         | Right    | 9                 | 0.29                             |    |
| North East  | Left     | 8                 | 0.01                             |    |
| Road (NE)   | Through  | 1                 | 0.01                             |    |
|             | Right    | 1                 | 0.01                             |    |
| Bells Lane  | Left     | 1                 | 0.21                             |    |
| (N)         | Through  | 324               | 0.21                             |    |
| (1)         | Right    | 1                 | 0.21                             |    |
| South West  | Left     | 1                 | 0.03                             |    |
| Road (SW)   | Through  | 1                 | 0.03                             |    |
| Ruau (SW)   | Right    | 22                | 0.03                             |    |
| Intersectio |          |                   |                                  |    |
| n           | All      | 867               | 0.29                             |    |





| lay (s) | 95%ile<br>Queue (m) | Level of<br>Service |
|---------|---------------------|---------------------|
| 3.8     | 14.9                | LOS A               |
| 3.8     | 14.9                | LOS A               |
| 7.8     | 14.9                | LOS A               |
| 4.8     | 0.4                 | LOS A               |
| 5.2     | 0.4                 | LOS A               |
| 11.4    | 0.4                 | LOS A               |
| 4       | 10                  | LOS A               |
| 4       | 10                  | LOS A               |
| 8       | 10                  | LOS A               |
| 5.9     | 0.9                 | LOS A               |
| 6.3     | 0.9                 | LOS A               |
| 12.5    | 0.9                 | LOS A               |
| 4.2     | 14.9                | LOS A               |
|         |                     |                     |



# Appendix B: Detailed SIDRA Assessment Outputs





Node 17335

### SITE LAYOUT

# **V** Site: 101 [17334\_2041\_AAST\_AM]

Node: 17334 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:58:41 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

## ₩ Site: 101 [17334\_2041\_AAST\_AM]

Node: 17334 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement P   | Performanc   | ce - Vel | nicles |         |          |          |          |        |           |           |       |
|--------|-----------|--------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn      | Demand       |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |           | Total        | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| South  | : Bells L | veh/h        | %        | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/r  |
| 1b     | L3        | 22           | 0.0      | 0.163  | 3.8     | LOS A    | 1.1      | 7.6      | 0.04   | 0.39      | 0.04      | 43.1  |
| 2      | L3<br>T1  | 252          | 0.0      | 0.163  | 3.8     | LOSA     | 1.1      | 7.6      | 0.04   | 0.39      | 0.04      | 50.6  |
|        |           | 252          |          |        |         |          |          |          |        |           |           |       |
| 3a     | R1        | •            | 0.0      | 0.163  | 7.8     | LOS A    | 1.1      | 7.6      | 0.04   | 0.39      | 0.04      | 40.4  |
| Appro  | ach       | 281          | 0.0      | 0.163  | 3.9     | LOS A    | 1.1      | 7.6      | 0.04   | 0.39      | 0.04      | 49.8  |
| North  | East: No  | rth East Roa | ad       |        |         |          |          |          |        |           |           |       |
| 24a    | L1        | 14           | 0.0      | 0.020  | 7.2     | LOS A    | 0.1      | 0.8      | 0.68   | 0.60      | 0.68      | 35.9  |
| 5      | T1        | 1            | 0.0      | 0.020  | 7.6     | LOS A    | 0.1      | 0.8      | 0.68   | 0.60      | 0.68      | 35.9  |
| 26b    | R3        | 1            | 0.0      | 0.020  | 13.8    | LOS A    | 0.1      | 0.8      | 0.68   | 0.60      | 0.68      | 36.7  |
| Appro  | ach       | 16           | 0.0      | 0.020  | 7.7     | LOS A    | 0.1      | 0.8      | 0.68   | 0.60      | 0.68      | 36.0  |
| North: | Bells La  | ane          |          |        |         |          |          |          |        |           |           |       |
| 7b     | L3        | 1            | 0.0      | 0.426  | 4.1     | LOS A    | 3.6      | 25.4     | 0.23   | 0.37      | 0.23      | 41.2  |
| 8      | T1        | 664          | 0.0      | 0.426  | 4.1     | LOS A    | 3.6      | 25.4     | 0.23   | 0.37      | 0.23      | 43.5  |
| 9a     | R1        | 1            | 0.0      | 0.426  | 8.1     | LOS A    | 3.6      | 25.4     | 0.23   | 0.37      | 0.23      | 41.1  |
| Appro  | ach       | 666          | 0.0      | 0.426  | 4.1     | LOS A    | 3.6      | 25.4     | 0.23   | 0.37      | 0.23      | 43.4  |
| South  | West: S   | outh West R  | load     |        |         |          |          |          |        |           |           |       |
| 30a    | L1        | 1            | 0.0      | 0.029  | 4.7     | LOS A    | 0.1      | 1.0      | 0.41   | 0.62      | 0.41      | 37.6  |
| 11     | T1        | 1            | 0.0      | 0.029  | 5.0     | LOS A    | 0.1      | 1.0      | 0.41   | 0.62      | 0.41      | 32.9  |
| 32b    | R3        | 31           | 0.0      | 0.029  | 11.3    | LOS A    | 0.1      | 1.0      | 0.41   | 0.62      | 0.41      | 32.2  |
| Appro  | ach       | 33           | 0.0      | 0.029  | 10.8    | LOS A    | 0.1      | 1.0      | 0.41   | 0.62      | 0.41      | 32.4  |
| All Ve | hicles    | 996          | 0.0      | 0.426  | 4.3     | LOS A    | 3.6      | 25.4     | 0.19   | 0.39      | 0.19      | 44.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:03 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

## ₩ Site: 101 [17334\_2041\_AAST\_PM]

Node: 17334 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ment F    | Performanc    | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|---------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand I      |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total         | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L | veh/h         | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1b     | L3        | 23            | 0.0     | 0.291  | 3.8     | LOS A    | 2.1      | 14.9     | 0.04   | 0.38      | 0.04      | 43.2 |
|        |           |               |         |        |         |          |          |          |        |           |           |      |
| 2      | T1        | 474           | 0.0     | 0.291  | 3.8     | LOS A    | 2.1      | 14.9     | 0.04   | 0.38      | 0.04      | 50.7 |
| 3a     | R1        | 9             | 0.0     | 0.291  | 7.8     | LOS A    | 2.1      | 14.9     | 0.04   | 0.38      | 0.04      | 40.4 |
| Appro  | ach       | 506           | 0.0     | 0.291  | 3.9     | LOS A    | 2.1      | 14.9     | 0.04   | 0.38      | 0.04      | 50.1 |
| North  | East: No  | orth East Roa | ad      |        |         |          |          |          |        |           |           |      |
| 24a    | L1        | 8             | 0.0     | 0.010  | 4.8     | LOS A    | 0.1      | 0.4      | 0.48   | 0.48      | 0.48      | 38.7 |
| 5      | T1        | 1             | 0.0     | 0.010  | 5.2     | LOS A    | 0.1      | 0.4      | 0.48   | 0.48      | 0.48      | 38.6 |
| 26b    | R3        | 1             | 0.0     | 0.010  | 11.4    | LOS A    | 0.1      | 0.4      | 0.48   | 0.48      | 0.48      | 39.1 |
| Appro  | ach       | 11            | 0.0     | 0.010  | 5.5     | LOS A    | 0.1      | 0.4      | 0.48   | 0.48      | 0.48      | 38.7 |
| North: | Bells La  | ane           |         |        |         |          |          |          |        |           |           |      |
| 7b     | L3        | 1             | 0.0     | 0.212  | 4.0     | LOS A    | 1.4      | 10.0     | 0.17   | 0.37      | 0.17      | 41.9 |
| 8      | T1        | 324           | 0.0     | 0.212  | 4.0     | LOS A    | 1.4      | 10.0     | 0.17   | 0.37      | 0.17      | 44.2 |
| 9a     | R1        | 1             | 0.0     | 0.212  | 8.0     | LOS A    | 1.4      | 10.0     | 0.17   | 0.37      | 0.17      | 41.7 |
| Appro  | ach       | 326           | 0.0     | 0.212  | 4.0     | LOS A    | 1.4      | 10.0     | 0.17   | 0.37      | 0.17      | 44.2 |
| South  | West: S   | outh West R   | oad     |        |         |          |          |          |        |           |           |      |
| 30a    | L1        | 1             | 0.0     | 0.025  | 5.9     | LOS A    | 0.1      | 0.9      | 0.55   | 0.66      | 0.55      | 36.8 |
| 11     | T1        | 1             | 0.0     | 0.025  | 6.3     | LOS A    | 0.1      | 0.9      | 0.55   | 0.66      | 0.55      | 32.1 |
| 32b    | R3        | 22            | 0.0     | 0.025  | 12.5    | LOS A    | 0.1      | 0.9      | 0.55   | 0.66      | 0.55      | 31.5 |
| Appro  | ach       | 24            | 0.0     | 0.025  | 12.0    | LOS A    | 0.1      | 0.9      | 0.55   | 0.66      | 0.55      | 31.8 |
| All Ve | hicles    | 867           | 0.0     | 0.291  | 4.2     | LOS A    | 2.1      | 14.9     | 0.11   | 0.39      | 0.11      | 46.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:03 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### SITE LAYOUT

# **V** Site: 101 [17335\_2041\_AAST\_AM]

Node: 17335 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:55:55 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

## ₩ Site: 101 [17335\_2041\_AAST\_AM]

Node: 17335 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F    | Performanc  | e - Vel | hicles |         |          |          |          |        |           |           |       |
|--------|------------|-------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn       | Demand I    |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |            | Total       | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| Couth  | . Della I  | veh/h       | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h  |
|        | : Bells L  |             |         |        |         |          |          |          |        |           |           |       |
| 1      | L2         | 16          | 0.0     | 0.187  | 4.1     | LOS A    | 1.2      | 8.1      | 0.28   | 0.41      | 0.28      | 43.5  |
| 2      | T1         | 237         | 0.0     | 0.187  | 4.3     | LOS A    | 1.2      | 8.1      | 0.28   | 0.41      | 0.28      | 42.7  |
| 3      | R2         | 1           | 0.0     | 0.187  | 9.4     | LOS A    | 1.2      | 8.1      | 0.28   | 0.41      | 0.28      | 42.2  |
| Appro  | bach       | 254         | 0.0     | 0.187  | 4.3     | LOS A    | 1.2      | 8.1      | 0.28   | 0.41      | 0.28      | 42.7  |
| East:  | Propose    | d Abernethy | s Lane  |        |         |          |          |          |        |           |           |       |
| 4      | L2         | 1           | 0.0     | 0.023  | 8.1     | LOS A    | 0.1      | 1.0      | 0.72   | 0.65      | 0.72      | 37.5  |
| 5      | T1         | 8           | 0.0     | 0.023  | 8.3     | LOS A    | 0.1      | 1.0      | 0.72   | 0.65      | 0.72      | 32.2  |
| 6      | R2         | 7           | 0.0     | 0.023  | 13.4    | LOS A    | 0.1      | 1.0      | 0.72   | 0.65      | 0.72      | 30.8  |
| Appro  | bach       | 17          | 0.0     | 0.023  | 10.5    | LOS A    | 0.1      | 1.0      | 0.72   | 0.65      | 0.72      | 31.9  |
| North  | : Bells La | ane         |         |        |         |          |          |          |        |           |           |       |
| 7      | L2         | 9           | 0.0     | 0.465  | 4.1     | LOS A    | 4.2      | 29.6     | 0.32   | 0.42      | 0.32      | 42.0  |
| 8      | T1         | 611         | 0.0     | 0.465  | 4.2     | LOS A    | 4.2      | 29.6     | 0.32   | 0.42      | 0.32      | 46.0  |
| 9      | R2         | 76          | 0.0     | 0.465  | 9.3     | LOS A    | 4.2      | 29.6     | 0.32   | 0.42      | 0.32      | 34.4  |
| Appro  | bach       | 696         | 0.0     | 0.465  | 4.8     | LOS A    | 4.2      | 29.6     | 0.32   | 0.42      | 0.32      | 44.5  |
| West:  | Abernet    | hys Lane    |         |        |         |          |          |          |        |           |           |       |
| 10     | L2         | 65          | 0.0     | 0.111  | 5.0     | LOS A    | 0.6      | 4.4      | 0.44   | 0.59      | 0.44      | 37.4  |
| 11     | T1         | 6           | 0.0     | 0.111  | 5.1     | LOS A    | 0.6      | 4.4      | 0.44   | 0.59      | 0.44      | 42.3  |
| 12     | R2         | 54          | 0.0     | 0.111  | 10.2    | LOS A    | 0.6      | 4.4      | 0.44   | 0.59      | 0.44      | 37.5  |
| Appro  | bach       | 125         | 0.0     | 0.111  | 7.2     | LOS A    | 0.6      | 4.4      | 0.44   | 0.59      | 0.44      | 37.7  |
| All Ve | hicles     | 1092        | 0.0     | 0.465  | 5.0     | LOS A    | 4.2      | 29.6     | 0.33   | 0.44      | 0.33      | 43.0  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:43:04 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

## ₩ Site: 101 [17335\_2041\_AAST\_PM]

Node: 17335 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F    | Performanc  | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|------------|-------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn       | Demand I    |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |            | Total       | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L  | veh/h       | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2         | 24          | 0.0     | 0.340  | 4.2     | LOS A    | 2.4      | 16.6     | 0.32   | 0.42      | 0.32      | 43.1 |
|        | T1         |             |         |        |         | LOS A    |          |          |        |           |           |      |
| 2      |            | 449         | 0.0     | 0.340  | 4.4     |          | 2.4      | 16.6     | 0.32   | 0.42      | 0.32      | 42.2 |
| 3      | R2         | 1           | 0.0     | 0.340  | 9.5     | LOS A    | 2.4      | 16.6     | 0.32   | 0.42      | 0.32      | 41.8 |
| Appro  | bach       | 475         | 0.0     | 0.340  | 4.4     | LOS A    | 2.4      | 16.6     | 0.32   | 0.42      | 0.32      | 42.3 |
| East:  | Propose    | d Abernethy | s Lane  |        |         |          |          |          |        |           |           |      |
| 4      | L2         | 1           | 0.0     | 0.018  | 5.6     | LOS A    | 0.1      | 0.7      | 0.52   | 0.58      | 0.52      | 39.6 |
| 5      | T1         | 7           | 0.0     | 0.018  | 5.8     | LOS A    | 0.1      | 0.7      | 0.52   | 0.58      | 0.52      | 34.0 |
| 6      | R2         | 9           | 0.0     | 0.018  | 10.9    | LOS A    | 0.1      | 0.7      | 0.52   | 0.58      | 0.52      | 32.4 |
| Appro  | bach       | 18          | 0.0     | 0.018  | 8.5     | LOS A    | 0.1      | 0.7      | 0.52   | 0.58      | 0.52      | 33.5 |
| North  | : Bells La | ane         |         |        |         |          |          |          |        |           |           |      |
| 7      | L2         | 7           | 0.0     | 0.250  | 3.8     | LOS A    | 1.9      | 13.0     | 0.15   | 0.43      | 0.15      | 43.2 |
| 8      | T1         | 311         | 0.0     | 0.250  | 3.9     | LOS A    | 1.9      | 13.0     | 0.15   | 0.43      | 0.15      | 47.2 |
| 9      | R2         | 79          | 0.0     | 0.250  | 9.0     | LOS A    | 1.9      | 13.0     | 0.15   | 0.43      | 0.15      | 35.3 |
| Appro  | bach       | 397         | 0.0     | 0.250  | 4.9     | LOS A    | 1.9      | 13.0     | 0.15   | 0.43      | 0.15      | 44.5 |
| West:  | Abernet    | hys Lane    |         |        |         |          |          |          |        |           |           |      |
| 10     | L2         | 77          | 0.0     | 0.104  | 6.2     | LOS A    | 0.6      | 4.3      | 0.60   | 0.64      | 0.60      | 37.7 |
| 11     | T1         | 7           | 0.0     | 0.104  | 6.4     | LOS A    | 0.6      | 4.3      | 0.60   | 0.64      | 0.60      | 42.9 |
| 12     | R2         | 15          | 0.0     | 0.104  | 11.5    | LOS A    | 0.6      | 4.3      | 0.60   | 0.64      | 0.60      | 37.8 |
| Appro  | bach       | 99          | 0.0     | 0.104  | 7.0     | LOS A    | 0.6      | 4.3      | 0.60   | 0.64      | 0.60      | 38.1 |
| All Ve | hicles     | 988         | 0.0     | 0.340  | 4.9     | LOS A    | 2.4      | 16.6     | 0.28   | 0.45      | 0.28      | 42.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:43:05 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### SITE LAYOUT

₩ Site: 101 [20592\_2041\_AAST\_AM]

Node: 20592 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:45:12 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

# ₩ Site: 101 [20592\_2041\_AAST\_AM]

Node: 20592 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Movement Performance - Vehicles |         |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
|---------------------------------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|------|
| Mov<br>ID                       | Turn    | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |
| SouthEast: Pestells Lane        |         |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 21                              | L2      | 65                         | 0.0              | 0.178               | 5.6                     | LOS A               | 1.1                         | 8.0                       | 0.51            | 0.63                   | 0.51                | 46.3 |
| 23a                             | R1      | 120                        | 0.0              | 0.178               | 9.0                     | LOS A               | 1.1                         | 8.0                       | 0.51            | 0.63                   | 0.51                | 42.0 |
| Appro                           | ach     | 185                        | 0.0              | 0.178               | 7.8                     | LOS A               | 1.1                         | 8.0                       | 0.51            | 0.63                   | 0.51                | 43.9 |
| North:                          | Pestell | s Lane                     |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 7a                              | L1      | 313                        | 0.0              | 0.511               | 6.2                     | LOS A               | 4.2                         | 29.5                      | 0.65            | 0.67                   | 0.65                | 42.5 |
| 9a                              | R1      | 241                        | 0.0              | 0.511               | 9.7                     | LOS A               | 4.2                         | 29.5                      | 0.65            | 0.67                   | 0.65                | 48.2 |
| Appro                           | ach     | 554                        | 0.0              | 0.511               | 7.7                     | LOS A               | 4.2                         | 29.5                      | 0.65            | 0.67                   | 0.65                | 45.6 |
| South                           | West: U | RA Access                  |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 30a                             | L1      | 119                        | 0.0              | 0.298               | 4.7                     | LOS A               | 2.1                         | 15.0                      | 0.39            | 0.59                   | 0.39                | 48.4 |
| 32                              | R2      | 254                        | 0.0              | 0.298               | 9.2                     | LOS A               | 2.1                         | 15.0                      | 0.39            | 0.59                   | 0.39                | 44.9 |
| Appro                           | ach     | 373                        | 0.0              | 0.298               | 7.8                     | LOS A               | 2.1                         | 15.0                      | 0.39            | 0.59                   | 0.39                | 46.1 |
| All Vel                         | hicles  | 1112                       | 0.0              | 0.511               | 7.7                     | LOS A               | 4.2                         | 29.5                      | 0.54            | 0.64                   | 0.54                | 45.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 11:06:33 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **MOVEMENT SUMMARY**

# ₩ Site: 101 [20592\_2041\_AAST\_PM]

Node: 20592 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move                     | ment F   | Performanc                 | e - Vel          | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|--------------------------|----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID                | Turn     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| SouthEast: Pestells Lane |          |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 21                       | L2       | 231                        | 0.0              | 0.430               | 5.7                     | LOS A               | 3.4                         | 23.9                      | 0.58            | 0.64                   | 0.58                | 46.5                     |
| 23a                      | R1       | 252                        | 0.0              | 0.430               | 9.2                     | LOS A               | 3.4                         | 23.9                      | 0.58            | 0.64                   | 0.58                | 42.2                     |
| Appro                    | ach      | 482                        | 0.0              | 0.430               | 7.5                     | LOS A               | 3.4                         | 23.9                      | 0.58            | 0.64                   | 0.58                | 44.6                     |
| North:                   | Pestells | s Lane                     |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7a                       | L1       | 153                        | 0.0              | 0.332               | 5.5                     | LOS A               | 2.4                         | 16.9                      | 0.53            | 0.63                   | 0.53                | 42.6                     |
| 9a                       | R1       | 212                        | 0.0              | 0.332               | 9.0                     | LOS A               | 2.4                         | 16.9                      | 0.53            | 0.63                   | 0.53                | 48.3                     |
| Appro                    | ach      | 364                        | 0.0              | 0.332               | 7.5                     | LOS A               | 2.4                         | 16.9                      | 0.53            | 0.63                   | 0.53                | 46.5                     |
| South                    | West: U  | RA Access                  |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 30a                      | L1       | 138                        | 0.0              | 0.337               | 5.8                     | LOS A               | 2.4                         | 17.0                      | 0.57            | 0.67                   | 0.57                | 47.9                     |
| 32                       | R2       | 215                        | 0.0              | 0.337               | 10.3                    | LOS A               | 2.4                         | 17.0                      | 0.57            | 0.67                   | 0.57                | 44.5                     |
| Appro                    | ach      | 353                        | 0.0              | 0.337               | 8.5                     | LOS A               | 2.4                         | 17.0                      | 0.57            | 0.67                   | 0.57                | 45.9                     |
| All Ve                   | hicles   | 1199                       | 0.0              | 0.430               | 7.8                     | LOS A               | 3.4                         | 23.9                      | 0.56            | 0.65                   | 0.56                | 45.6                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 11:06:33 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8
### **Site: 101 [21587\_2041\_AAST\_AM]**

Node: 21587 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:44:10 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21587\_2041\_AAST\_AM]

Node: 21587 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | Performanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|-----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F              |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total                 | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | · South ( | veh/h<br>Collector Ro | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2        | 5                     | 0.0     | 0.071  | 2.9     | LOS A    | 0.4      | 2.8      | 0.34   | 0.45      | 0.34      | 34.3 |
| 2      | T1        | 73                    | 0.0     | 0.071  | 3.3     | LOSA     | 0.4      | 2.0      | 0.34   | 0.45      | 0.34      | 47.3 |
| -      |           |                       |         |        |         |          |          |          |        |           |           |      |
| 3      | R2        | 11                    | 0.0     | 0.071  | 7.8     | LOSA     | 0.4      | 2.8      | 0.34   | 0.45      | 0.34      | 35.9 |
| Appro  | bach      | 88                    | 0.0     | 0.071  | 3.8     | LOS A    | 0.4      | 2.8      | 0.34   | 0.45      | 0.34      | 45.1 |
| East:  | East Co   | llector Road          |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 32                    | 0.0     | 0.130  | 4.1     | LOS A    | 0.8      | 5.4      | 0.35   | 0.54      | 0.35      | 32.7 |
| 5      | T1        | 59                    | 0.0     | 0.130  | 4.3     | LOS A    | 0.8      | 5.4      | 0.35   | 0.54      | 0.35      | 35.3 |
| 6      | R2        | 72                    | 0.0     | 0.130  | 9.4     | LOS A    | 0.8      | 5.4      | 0.35   | 0.54      | 0.35      | 37.0 |
| Appro  | ach       | 162                   | 0.0     | 0.130  | 6.5     | LOS A    | 0.8      | 5.4      | 0.35   | 0.54      | 0.35      | 35.7 |
| North  | : North F | Road                  |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 108                   | 0.0     | 0.186  | 4.2     | LOS A    | 1.2      | 8.1      | 0.32   | 0.46      | 0.32      | 39.7 |
| 8      | T1        | 120                   | 0.0     | 0.186  | 4.4     | LOS A    | 1.2      | 8.1      | 0.32   | 0.46      | 0.32      | 38.2 |
| 9      | R2        | 18                    | 0.0     | 0.186  | 9.5     | LOS A    | 1.2      | 8.1      | 0.32   | 0.46      | 0.32      | 37.5 |
| Appro  | ach       | 246                   | 0.0     | 0.186  | 4.7     | LOS A    | 1.2      | 8.1      | 0.32   | 0.46      | 0.32      | 38.8 |
| West:  | West C    | ollector Road         | d       |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 14                    | 0.0     | 0.091  | 3.7     | LOS A    | 0.5      | 3.5      | 0.34   | 0.44      | 0.34      | 42.4 |
| 11     | T1        | 93                    | 0.0     | 0.091  | 4.0     | LOS A    | 0.5      | 3.5      | 0.34   | 0.44      | 0.34      | 39.0 |
| 12     | R2        | 6                     | 0.0     | 0.091  | 8.9     | LOS A    | 0.5      | 3.5      | 0.34   | 0.44      | 0.34      | 33.6 |
| Appro  | bach      | 113                   | 0.0     | 0.091  | 4.2     | LOS A    | 0.5      | 3.5      | 0.34   | 0.44      | 0.34      | 39.2 |
| All Ve | hicles    | 609                   | 0.0     | 0.186  | 5.0     | LOS A    | 1.2      | 8.1      | 0.33   | 0.48      | 0.33      | 38.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:48 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21587\_2041\_AAST\_PM]

Node: 21587 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | erformanc             | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|-----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand I              |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total                 | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | South     | veh/h<br>Collector Ro | %<br>ad | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2        | 9                     | 0.0     | 0.144  | 3.4     | LOS A    | 0.8      | 5.9      | 0.44   | 0.50      | 0.44      | 33.7 |
| 2      | T1        | 146                   | 0.0     | 0.144  | 3.8     | LOSA     | 0.8      | 5.9      | 0.44   | 0.50      | 0.44      | 46.5 |
| 2      | R2        | 140                   | 0.0     | 0.144  | 8.4     | LOSA     | 0.0      | 5.9      | 0.44   | 0.50      | 0.44      | 35.2 |
| -      |           | 166                   | 0.0     | 0.144  | 4.1     | LOSA     | 0.8      | 5.9      | 0.44   | 0.50      | 0.44      | 45.0 |
| Appro  | bach      | 100                   | 0.0     | 0.144  | 4.1     | LUSA     | 0.8      | 5.9      | 0.44   | 0.50      | 0.44      | 45.0 |
| East:  | East Co   | llector Road          |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 35                    | 0.0     | 0.184  | 3.7     | LOS A    | 1.1      | 8.0      | 0.26   | 0.53      | 0.26      | 33.1 |
| 5      | T1        | 95                    | 0.0     | 0.184  | 3.9     | LOS A    | 1.1      | 8.0      | 0.26   | 0.53      | 0.26      | 35.7 |
| 6      | R2        | 126                   | 0.0     | 0.184  | 9.0     | LOS A    | 1.1      | 8.0      | 0.26   | 0.53      | 0.26      | 37.3 |
| Appro  | bach      | 256                   | 0.0     | 0.184  | 6.4     | LOS A    | 1.1      | 8.0      | 0.26   | 0.53      | 0.26      | 36.3 |
| North  | : North F | Road                  |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 103                   | 0.0     | 0.133  | 4.1     | LOS A    | 0.8      | 5.7      | 0.28   | 0.45      | 0.28      | 40.0 |
| 8      | T1        | 60                    | 0.0     | 0.133  | 4.3     | LOS A    | 0.8      | 5.7      | 0.28   | 0.45      | 0.28      | 38.5 |
| 9      | R2        | 15                    | 0.0     | 0.133  | 9.4     | LOS A    | 0.8      | 5.7      | 0.28   | 0.45      | 0.28      | 37.8 |
| Appro  | bach      | 178                   | 0.0     | 0.133  | 4.6     | LOS A    | 0.8      | 5.7      | 0.28   | 0.45      | 0.28      | 39.3 |
| West:  | West C    | ollector Roa          | d       |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 18                    | 0.0     | 0.087  | 4.4     | LOS A    | 0.5      | 3.5      | 0.46   | 0.51      | 0.46      | 41.3 |
| 11     | T1        | 76                    | 0.0     | 0.087  | 4.6     | LOS A    | 0.5      | 3.5      | 0.46   | 0.51      | 0.46      | 37.8 |
| 12     | R2        | 3                     | 0.0     | 0.087  | 9.6     | LOS A    | 0.5      | 3.5      | 0.46   | 0.51      | 0.46      | 32.5 |
| Appro  | bach      | 97                    | 0.0     | 0.087  | 4.8     | LOS A    | 0.5      | 3.5      | 0.46   | 0.51      | 0.46      | 38.4 |
| All Ve | hicles    | 697                   | 0.0     | 0.184  | 5.2     | LOS A    | 1.1      | 8.0      | 0.34   | 0.50      | 0.34      | 39.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:49 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21588\_2041\_AAST\_AM]

Node: 21588 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:43:17 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21588\_2041\_AAST\_AM]

Node: 21588 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | Performanc     | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|----------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F       |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total<br>veh/h | HV<br>% | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : South I |                | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2        | 3              | 0.0     | 0.017  | 2.6     | LOS A    | 0.1      | 0.6      | 0.26   | 0.52      | 0.26      | 35.8 |
| 2      | T1        | 8              | 0.0     | 0.017  | 3.0     | LOSA     | 0.1      | 0.6      | 0.26   | 0.52      | 0.26      | 37.0 |
| 3      | R2        | 11             | 0.0     | 0.017  | 7.6     | LOSA     | 0.1      | 0.6      | 0.26   | 0.52      | 0.26      | 34.1 |
| Appro  |           | 22             | 0.0     | 0.017  | 5.1     | LOSA     | 0.1      | 0.6      | 0.26   | 0.52      | 0.26      | 35.4 |
|        |           |                | 0.0     | 0.017  | 0.1     | LOOM     | 0.1      | 0.0      | 0.20   | 0.02      | 0.20      | 00.4 |
| East:  | East Co   | llector Road   |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 3              | 0.0     | 0.062  | 3.9     | LOS A    | 0.3      | 2.4      | 0.30   | 0.42      | 0.30      | 35.7 |
| 5      | T1        | 71             | 0.0     | 0.062  | 4.1     | LOS A    | 0.3      | 2.4      | 0.30   | 0.42      | 0.30      | 39.4 |
| 6      | R2        | 4              | 0.0     | 0.062  | 9.2     | LOS A    | 0.3      | 2.4      | 0.30   | 0.42      | 0.30      | 37.2 |
| Appro  | bach      | 78             | 0.0     | 0.062  | 4.3     | LOS A    | 0.3      | 2.4      | 0.30   | 0.42      | 0.30      | 39.1 |
| North  | : North F | Road           |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 13             | 0.0     | 0.103  | 3.9     | LOS A    | 0.6      | 3.9      | 0.26   | 0.46      | 0.26      | 37.7 |
| 8      | T1        | 95             | 0.0     | 0.103  | 4.0     | LOS A    | 0.6      | 3.9      | 0.26   | 0.46      | 0.26      | 35.9 |
| 9      | R2        | 28             | 0.0     | 0.103  | 9.2     | LOS A    | 0.6      | 3.9      | 0.26   | 0.46      | 0.26      | 36.4 |
| Appro  | bach      | 136            | 0.0     | 0.103  | 5.1     | LOS A    | 0.6      | 3.9      | 0.26   | 0.46      | 0.26      | 36.2 |
| West:  | West C    | ollector Road  | ł       |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 19             | 0.0     | 0.068  | 3.4     | LOS A    | 0.4      | 2.6      | 0.12   | 0.38      | 0.12      | 41.1 |
| 11     | T1        | 81             | 0.0     | 0.068  | 3.6     | LOS A    | 0.4      | 2.6      | 0.12   | 0.38      | 0.12      | 41.9 |
| 12     | R2        | 1              | 0.0     | 0.068  | 8.7     | LOS A    | 0.4      | 2.6      | 0.12   | 0.38      | 0.12      | 36.9 |
| Appro  | bach      | 101            | 0.0     | 0.068  | 3.6     | LOS A    | 0.4      | 2.6      | 0.12   | 0.38      | 0.12      | 41.7 |
| All Ve | hicles    | 337            | 0.0     | 0.103  | 4.5     | LOS A    | 0.6      | 3.9      | 0.23   | 0.43      | 0.23      | 38.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:20:35 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21588\_2041\_AAST\_PM]

Node: 21588 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P   | Performanc     | e - Vel | nicles |         |          |          |          |        |           |           |      |
|--------|-----------|----------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F       |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total<br>veh/h | HV<br>% | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : South I |                | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/r |
| 1      | L2        | 6              | 0.0     | 0.026  | 2.7     | LOS A    | 0.1      | 0.9      | 0.29   | 0.48      | 0.29      | 36.8 |
| 2      | <br>T1    | 17             | 0.0     | 0.026  | 3.1     | LOSA     | 0.1      | 0.9      | 0.29   | 0.48      | 0.29      | 38.2 |
| 3      | R2        | 9              | 0.0     | 0.026  | 7.7     | LOSA     | 0.1      | 0.9      | 0.29   | 0.48      | 0.29      | 35.0 |
| Appro  |           | 33             | 0.0     | 0.026  | 4.4     | LOSA     | 0.1      | 0.9      | 0.29   | 0.48      | 0.29      | 37.0 |
| ••     |           |                | 0.0     | 0.020  |         | LOOM     | 0.1      | 0.0      | 0.20   | 0.40      | 0.20      | 07.0 |
| East:  | East Roa  | ad             |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 4              | 0.0     | 0.080  | 3.6     | LOS A    | 0.4      | 3.1      | 0.23   | 0.40      | 0.23      | 36.5 |
| 5      | T1        | 96             | 0.0     | 0.080  | 3.8     | LOS A    | 0.4      | 3.1      | 0.23   | 0.40      | 0.23      | 40.2 |
| 6      | R2        | 7              | 0.0     | 0.080  | 8.9     | LOS A    | 0.4      | 3.1      | 0.23   | 0.40      | 0.23      | 37.9 |
| Appro  | ach       | 107            | 0.0     | 0.080  | 4.1     | LOS A    | 0.4      | 3.1      | 0.23   | 0.40      | 0.23      | 39.9 |
| North  | North F   | Road           |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 6              | 0.0     | 0.058  | 3.8     | LOS A    | 0.3      | 2.1      | 0.24   | 0.48      | 0.24      | 37.1 |
| 8      | T1        | 46             | 0.0     | 0.058  | 4.0     | LOS A    | 0.3      | 2.1      | 0.24   | 0.48      | 0.24      | 35.3 |
| 9      | R2        | 23             | 0.0     | 0.058  | 9.2     | LOS A    | 0.3      | 2.1      | 0.24   | 0.48      | 0.24      | 36.0 |
| Appro  | ach       | 76             | 0.0     | 0.058  | 5.6     | LOS A    | 0.3      | 2.1      | 0.24   | 0.48      | 0.24      | 35.7 |
| West:  | West Re   | oad            |         |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 26             | 0.0     | 0.072  | 3.5     | LOS A    | 0.4      | 2.8      | 0.15   | 0.38      | 0.15      | 40.7 |
| 11     | T1        | 77             | 0.0     | 0.072  | 3.6     | LOS A    | 0.4      | 2.8      | 0.15   | 0.38      | 0.15      | 41.5 |
| 12     | R2        | 1              | 0.0     | 0.072  | 8.8     | LOS A    | 0.4      | 2.8      | 0.15   | 0.38      | 0.15      | 36.5 |
| Appro  | ach       | 104            | 0.0     | 0.072  | 3.6     | LOS A    | 0.4      | 2.8      | 0.15   | 0.38      | 0.15      | 41.2 |
| All Ve | hicles    | 320            | 0.0     | 0.080  | 4.3     | LOS A    | 0.4      | 3.1      | 0.21   | 0.42      | 0.21      | 39.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:20:35 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21589\_2041\_AAST\_AM]

Node: 21589 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:55:43 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21589\_2041\_AAST\_AM]

Node: 21589 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F              | Performanc           | e - Vel  | hicles |         |          |          |          |        |           |           |      |
|--------|----------------------|----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn                 | Demand I             |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |                      | Total                | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Δh             | veh/h<br>ernethys La | %<br>ne  | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2                   | 66                   | 0.0      | 0.056  | 2.7     | LOS A    | 0.3      | 2.1      | 0.30   | 0.44      | 0.30      | 38.7 |
| 2      | T1                   | 3                    | 0.0      | 0.056  | 3.1     | LOSA     | 0.3      | 2.1      | 0.30   | 0.44      | 0.30      | 41.8 |
| _      | R2                   | 3<br>1               |          |        |         |          |          |          |        |           |           |      |
| 3      |                      |                      | 0.0      | 0.056  | 7.6     | LOS A    | 0.3      | 2.1      | 0.30   | 0.44      | 0.30      | 37.1 |
| Appro  | bach                 | 71                   | 0.0      | 0.056  | 2.8     | LOS A    | 0.3      | 2.1      | 0.30   | 0.44      | 0.30      | 38.8 |
| North  | East: No             | orth East Col        | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2                   | 11                   | 0.0      | 0.095  | 3.7     | LOS A    | 0.5      | 3.6      | 0.24   | 0.40      | 0.24      | 36.6 |
| 5      | T1                   | 115                  | 0.0      | 0.095  | 3.9     | LOS A    | 0.5      | 3.6      | 0.24   | 0.40      | 0.24      | 40.0 |
| 6      | R2                   | 1                    | 0.0      | 0.095  | 9.0     | LOS A    | 0.5      | 3.6      | 0.24   | 0.40      | 0.24      | 38.6 |
| Appro  | ach                  | 126                  | 0.0      | 0.095  | 3.9     | LOS A    | 0.5      | 3.6      | 0.24   | 0.40      | 0.24      | 39.7 |
| North  | West <sup>.</sup> Ak | pernethys La         | ine      |        |         |          |          |          |        |           |           |      |
| 7      | L2                   | 1                    | 0.0      | 0.024  | 4.3     | LOS A    | 0.1      | 0.8      | 0.30   | 0.48      | 0.30      | 37.0 |
| 8      | T1                   | 20                   | 0.0      | 0.024  | 4.4     | LOSA     | 0.1      | 0.8      | 0.30   | 0.48      | 0.30      | 35.0 |
| 9      | R2                   | 8                    | 0.0      | 0.024  | 9.6     | LOSA     | 0.1      | 0.0      | 0.30   | 0.40      | 0.30      | 35.4 |
|        |                      |                      |          |        |         | LOSA     |          |          |        |           |           |      |
| Appro  | bach                 | 29                   | 0.0      | 0.024  | 5.9     | LUSA     | 0.1      | 0.8      | 0.30   | 0.48      | 0.30      | 35.2 |
| South  | West: Se             | outh West C          | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2                   | 11                   | 0.0      | 0.091  | 3.1     | LOS A    | 0.5      | 3.7      | 0.05   | 0.50      | 0.05      | 41.1 |
| 11     | T1                   | 85                   | 0.0      | 0.091  | 3.4     | LOS A    | 0.5      | 3.7      | 0.05   | 0.50      | 0.05      | 39.4 |
| 12     | R2                   | 56                   | 0.0      | 0.091  | 8.4     | LOS A    | 0.5      | 3.7      | 0.05   | 0.50      | 0.05      | 34.4 |
| Appro  | bach                 | 152                  | 0.0      | 0.091  | 5.2     | LOS A    | 0.5      | 3.7      | 0.05   | 0.50      | 0.05      | 37.8 |
| All Ve | hicles               | 378                  | 0.0      | 0.095  | 4.4     | LOS A    | 0.5      | 3.7      | 0.18   | 0.45      | 0.18      | 38.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:57:03 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21589\_2041\_AAST\_PM]

Node: 21589 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc           | ce - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I             |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | Coot: Ab | veh/h<br>ernethys La | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        |          | ,                    |          | 0.050  |         | 1004     |          |          | 0.00   | 0.44      | 0.00      | 00.0 |
| 1      | L2       | 68                   | 0.0      | 0.059  | 2.6     | LOS A    | 0.3      | 2.3      | 0.29   | 0.44      | 0.29      | 38.6 |
| 2      | T1       | 5                    | 0.0      | 0.059  | 3.0     | LOS A    | 0.3      | 2.3      | 0.29   | 0.44      | 0.29      | 41.8 |
| 3      | R2       | 2                    | 0.0      | 0.059  | 7.6     | LOS A    | 0.3      | 2.3      | 0.29   | 0.44      | 0.29      | 37.1 |
| Appro  | ach      | 76                   | 0.0      | 0.059  | 2.8     | LOS A    | 0.3      | 2.3      | 0.29   | 0.44      | 0.29      | 38.8 |
| North  | East: No | orth East Col        | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                    | 0.0      | 0.078  | 3.7     | LOS A    | 0.4      | 2.9      | 0.23   | 0.39      | 0.23      | 36.8 |
| 5      | T1       | 101                  | 0.0      | 0.078  | 3.9     | LOS A    | 0.4      | 2.9      | 0.23   | 0.39      | 0.23      | 40.1 |
| 6      | R2       | 1                    | 0.0      | 0.078  | 9.0     | LOS A    | 0.4      | 2.9      | 0.23   | 0.39      | 0.23      | 38.8 |
| Appro  | ach      | 103                  | 0.0      | 0.078  | 3.9     | LOS A    | 0.4      | 2.9      | 0.23   | 0.39      | 0.23      | 40.1 |
| North  | West: Ab | pernethys La         | ane      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                    | 0.0      | 0.014  | 4.5     | LOS A    | 0.1      | 0.5      | 0.34   | 0.57      | 0.34      | 33.7 |
| 8      | T1       | 2                    | 0.0      | 0.014  | 4.6     | LOS A    | 0.1      | 0.5      | 0.34   | 0.57      | 0.34      | 31.4 |
| 9      | R2       | 14                   | 0.0      | 0.014  | 9.7     | LOS A    | 0.1      | 0.5      | 0.34   | 0.57      | 0.34      | 32.3 |
| Appro  | ach      | 17                   | 0.0      | 0.014  | 8.8     | LOS A    | 0.1      | 0.5      | 0.34   | 0.57      | 0.34      | 32.3 |
| South  | West: S  | outh West C          | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2       | 18                   | 0.0      | 0.121  | 3.2     | LOS A    | 0.7      | 5.0      | 0.06   | 0.49      | 0.06      | 41.3 |
| 11     | T1       | 116                  | 0.0      | 0.121  | 3.4     | LOS A    | 0.7      | 5.0      | 0.06   | 0.49      | 0.06      | 39.7 |
| 12     | R2       | 64                   | 0.0      | 0.121  | 8.4     | LOS A    | 0.7      | 5.0      | 0.06   | 0.49      | 0.06      | 34.6 |
| Appro  | ach      | 198                  | 0.0      | 0.121  | 5.0     | LOS A    | 0.7      | 5.0      | 0.06   | 0.49      | 0.06      | 38.3 |
| All Ve | hicles   | 394                  | 0.0      | 0.121  | 4.5     | LOS A    | 0.7      | 5.0      | 0.16   | 0.45      | 0.16      | 38.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:57:04 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21597\_2041\_AAST\_AM]

Node: 21597 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:57:02 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21597\_2041\_AAST\_AM]

Node: 21597 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F    | Performanc | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|------------|------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn       | Demand F   |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |            | Total      | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L  | veh/h      | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        | L2         | ane<br>24  | 0.0     | 0.202  | 3.7     | LOS A    | 1.3      | 9.4      | 0.10   | 0.41      | 0.10      | 39.3 |
| 1      |            |            |         |        |         |          |          |          |        | ••••      |           |      |
| 2      | T1         | 271        | 0.0     | 0.202  | 3.9     | LOS A    | 1.3      | 9.4      | 0.10   | 0.41      | 0.10      | 52.1 |
| 3      | R2         | 34         | 0.0     | 0.202  | 9.0     | LOS A    | 1.3      | 9.4      | 0.10   | 0.41      | 0.10      | 42.9 |
| Appro  | bach       | 328        | 0.0     | 0.202  | 4.4     | LOS A    | 1.3      | 9.4      | 0.10   | 0.41      | 0.10      | 50.3 |
| East:  | East Ro    | ad         |         |        |         |          |          |          |        |           |           |      |
| 4      | L2         | 75         | 0.0     | 0.114  | 7.4     | LOS A    | 0.7      | 5.2      | 0.77   | 0.73      | 0.77      | 40.0 |
| 5      | T1         | 5          | 0.0     | 0.114  | 7.7     | LOS A    | 0.7      | 5.2      | 0.77   | 0.73      | 0.77      | 28.7 |
| 6      | R2         | 1          | 0.0     | 0.114  | 12.4    | LOS A    | 0.7      | 5.2      | 0.77   | 0.73      | 0.77      | 42.0 |
| Appro  | bach       | 81         | 0.0     | 0.114  | 7.5     | LOS A    | 0.7      | 5.2      | 0.77   | 0.73      | 0.77      | 39.4 |
| North  | : Bells La | ane        |         |        |         |          |          |          |        |           |           |      |
| 7      | L2         | 1          | 0.0     | 0.497  | 4.4     | LOS A    | 4.4      | 31.1     | 0.40   | 0.43      | 0.40      | 32.5 |
| 8      | T1         | 699        | 0.0     | 0.497  | 4.5     | LOS A    | 4.4      | 31.1     | 0.40   | 0.43      | 0.40      | 49.7 |
| 9      | R2         | 8          | 0.0     | 0.497  | 9.6     | LOS A    | 4.4      | 31.1     | 0.40   | 0.43      | 0.40      | 33.6 |
| Appro  | ach        | 708        | 0.0     | 0.497  | 4.6     | LOS A    | 4.4      | 31.1     | 0.40   | 0.43      | 0.40      | 49.4 |
| West:  | West R     | oad        |         |        |         |          |          |          |        |           |           |      |
| 10     | L2         | 11         | 0.0     | 0.065  | 5.0     | LOS A    | 0.3      | 2.4      | 0.46   | 0.63      | 0.46      | 39.0 |
| 11     | T1         | 5          | 0.0     | 0.065  | 5.2     | LOS A    | 0.3      | 2.4      | 0.46   | 0.63      | 0.46      | 27.0 |
| 12     | R2         | 55         | 0.0     | 0.065  | 10.4    | LOS A    | 0.3      | 2.4      | 0.46   | 0.63      | 0.46      | 42.8 |
| Appro  | bach       | 71         | 0.0     | 0.065  | 9.2     | LOS A    | 0.3      | 2.4      | 0.46   | 0.63      | 0.46      | 41.2 |
| All Ve | hicles     | 1188       | 0.0     | 0.497  | 5.0     | LOS A    | 4.4      | 31.1     | 0.34   | 0.46      | 0.34      | 48.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:05 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21597\_2041\_AAST\_PM]

Node: 21597 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F    | Performanc | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|------------|------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn       | Demand F   |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |            | Total      | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L  | veh/h      | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2         | 46         | 0.0     | 0.357  | 3.7     | LOS A    | 2.8      | 19.5     | 0.11   | 0.40      | 0.11      | 39.3 |
| 2      | T1         | 40         | 0.0     | 0.357  | 3.9     | LOSA     | 2.0      | 19.5     | 0.11   | 0.40      | 0.11      | 52.1 |
| _      |            |            |         |        |         |          |          |          |        |           |           |      |
| 3      | R2         | 55         | 0.0     | 0.357  | 9.0     | LOS A    | 2.8      | 19.5     | 0.11   | 0.40      | 0.11      | 42.9 |
| Appro  | bach       | 597        | 0.0     | 0.357  | 4.3     | LOS A    | 2.8      | 19.5     | 0.11   | 0.40      | 0.11      | 50.3 |
| East:  | East Ro    | ad         |         |        |         |          |          |          |        |           |           |      |
| 4      | L2         | 42         | 0.0     | 0.048  | 4.2     | LOS A    | 0.3      | 1.9      | 0.52   | 0.54      | 0.52      | 45.7 |
| 5      | T1         | 6          | 0.0     | 0.048  | 4.6     | LOS A    | 0.3      | 1.9      | 0.52   | 0.54      | 0.52      | 34.1 |
| 6      | R2         | 1          | 0.0     | 0.048  | 9.3     | LOS A    | 0.3      | 1.9      | 0.52   | 0.54      | 0.52      | 49.3 |
| Appro  | bach       | 49         | 0.0     | 0.048  | 4.4     | LOS A    | 0.3      | 1.9      | 0.52   | 0.54      | 0.52      | 44.6 |
|        |            |            | 0.0     | 0.0.10 |         |          | 0.0      |          | 0.01   | 0.01      | 0.02      |      |
|        | : Bells La |            |         |        |         |          |          |          |        |           |           |      |
| 7      | L2         | 1          | 0.0     | 0.253  | 4.1     | LOS A    | 1.7      | 11.6     | 0.28   | 0.41      | 0.28      | 33.3 |
| 8      | T1         | 348        | 0.0     | 0.253  | 4.3     | LOS A    | 1.7      | 11.6     | 0.28   | 0.41      | 0.28      | 50.9 |
| 9      | R2         | 6          | 0.0     | 0.253  | 9.4     | LOS A    | 1.7      | 11.6     | 0.28   | 0.41      | 0.28      | 34.4 |
| Appro  | bach       | 356        | 0.0     | 0.253  | 4.4     | LOS A    | 1.7      | 11.6     | 0.28   | 0.41      | 0.28      | 50.5 |
| West:  | West R     | oad        |         |        |         |          |          |          |        |           |           |      |
| 10     | L2         | 11         | 0.0     | 0.041  | 6.5     | LOS A    | 0.2      | 1.6      | 0.60   | 0.65      | 0.60      | 38.9 |
| 11     | T1         | 7          | 0.0     | 0.041  | 6.6     | LOS A    | 0.2      | 1.6      | 0.60   | 0.65      | 0.60      | 26.5 |
| 12     | R2         | 19         | 0.0     | 0.041  | 11.8    | LOS A    | 0.2      | 1.6      | 0.60   | 0.65      | 0.60      | 42.7 |
| Appro  |            | 37         | 0.0     | 0.041  | 9.3     | LOS A    | 0.2      | 1.6      | 0.60   | 0.65      | 0.60      | 38.7 |
| All Ve | hicles     | 1039       | 0.0     | 0.357  | 4.5     | LOS A    | 2.8      | 19.5     | 0.20   | 0.42      | 0.20      | 49.8 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:05 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## **V** Site: 101 [21601\_2041\_AAST\_AM]

Node: 21601 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:58:46 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21601\_2041\_AAST\_AM]

Node: 21601 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc    | ce - Vel | hicles |         |          |          |          |        |           |           |       |
|--------|----------|---------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn     | Demand I      |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |          | Total         | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| 0      | East O   | veh/h         | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h  |
|        |          | outh East Ro  |          |        |         |          |          |          |        |           |           |       |
| 1      | L2       | 38            | 0.0      | 0.039  | 5.1     | LOS A    | 0.2      | 1.5      | 0.49   | 0.54      | 0.49      | 42.0  |
| 2      | T1       | 2             | 0.0      | 0.039  | 5.3     | LOS A    | 0.2      | 1.5      | 0.49   | 0.54      | 0.49      | 28.0  |
| 3      | R2       | 1             | 0.0      | 0.039  | 10.5    | LOS A    | 0.2      | 1.5      | 0.49   | 0.54      | 0.49      | 50.4  |
| Appro  | ach      | 41            | 0.0      | 0.039  | 5.3     | LOS A    | 0.2      | 1.5      | 0.49   | 0.54      | 0.49      | 41.4  |
| North  | East: No | orth East Col | lector R | Road   |         |          |          |          |        |           |           |       |
| 4      | L2       | 1             | 0.0      | 0.166  | 4.6     | LOS A    | 1.0      | 7.0      | 0.40   | 0.46      | 0.40      | 45.0  |
| 5      | T1       | 196           | 0.0      | 0.166  | 4.8     | LOS A    | 1.0      | 7.0      | 0.40   | 0.46      | 0.40      | 50.2  |
| 6      | R2       | 4             | 0.0      | 0.166  | 9.9     | LOS A    | 1.0      | 7.0      | 0.40   | 0.46      | 0.40      | 44.4  |
| Appro  | ach      | 201           | 0.0      | 0.166  | 4.9     | LOS A    | 1.0      | 7.0      | 0.40   | 0.46      | 0.40      | 50.0  |
| North  | West: N  | orth West Ro  | oad      |        |         |          |          |          |        |           |           |       |
| 7      | L2       | 4             | 0.0      | 0.125  | 4.6     | LOS A    | 0.7      | 4.8      | 0.36   | 0.62      | 0.36      | 42.0  |
| 8      | T1       | 1             | 0.0      | 0.125  | 4.8     | LOS A    | 0.7      | 4.8      | 0.36   | 0.62      | 0.36      | 33.7  |
| 9      | R2       | 146           | 0.0      | 0.125  | 9.8     | LOS A    | 0.7      | 4.8      | 0.36   | 0.62      | 0.36      | 26.1  |
| Appro  | ach      | 152           | 0.0      | 0.125  | 9.7     | LOS A    | 0.7      | 4.8      | 0.36   | 0.62      | 0.36      | 26.5  |
| South  | West: S  | outh West C   | ollector | Road   |         |          |          |          |        |           |           |       |
| 10     | L2       | 66            | 0.0      | 0.144  | 3.7     | LOS A    | 0.9      | 6.1      | 0.06   | 0.43      | 0.06      | 45.2  |
| 11     | T1       | 147           | 0.0      | 0.144  | 3.8     | LOS A    | 0.9      | 6.1      | 0.06   | 0.43      | 0.06      | 53.0  |
| 12     | R2       | 26            | 0.0      | 0.144  | 8.9     | LOS A    | 0.9      | 6.1      | 0.06   | 0.43      | 0.06      | 41.4  |
| Appro  | ach      | 240           | 0.0      | 0.144  | 4.4     | LOS A    | 0.9      | 6.1      | 0.06   | 0.43      | 0.06      | 50.2  |
| All Ve | hicles   | 634           | 0.0      | 0.166  | 5.9     | LOS A    | 1.0      | 7.0      | 0.27   | 0.49      | 0.27      | 42.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:16:06 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21601\_2041\_AAST\_PM]

Node: 21601 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | ce - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | Faat: Se | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        |          |                       |          | 0.005  | 4.0     |          |          | 4.0      | 0.45   | 0.54      | 0.45      | 40.0 |
| 1      | L2       | 35                    | 0.0      | 0.035  | 4.8     | LOS A    | 0.2      | 1.3      | 0.45   | 0.51      | 0.45      | 42.3 |
| 2      | T1       | 3                     | 0.0      | 0.035  | 5.0     | LOS A    | 0.2      | 1.3      | 0.45   | 0.51      | 0.45      | 28.2 |
| 3      | R2       | 1                     | 0.0      | 0.035  | 10.2    | LOS A    | 0.2      | 1.3      | 0.45   | 0.51      | 0.45      | 50.6 |
| Appro  | bach     | 39                    | 0.0      | 0.035  | 5.0     | LOS A    | 0.2      | 1.3      | 0.45   | 0.51      | 0.45      | 41.2 |
| North  | East: No | orth East Col         | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                     | 0.0      | 0.156  | 4.4     | LOS A    | 0.9      | 6.6      | 0.34   | 0.43      | 0.34      | 45.5 |
| 5      | T1       | 194                   | 0.0      | 0.156  | 4.5     | LOS A    | 0.9      | 6.6      | 0.34   | 0.43      | 0.34      | 50.7 |
| 6      | R2       | 4                     | 0.0      | 0.156  | 9.6     | LOS A    | 0.9      | 6.6      | 0.34   | 0.43      | 0.34      | 44.8 |
| Appro  | bach     | 199                   | 0.0      | 0.156  | 4.6     | LOS A    | 0.9      | 6.6      | 0.34   | 0.43      | 0.34      | 50.6 |
| North  | West: No | orth West Ro          | bad      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 3                     | 0.0      | 0.083  | 4.9     | LOS A    | 0.4      | 3.1      | 0.41   | 0.63      | 0.41      | 41.8 |
| 8      | T1       | 1                     | 0.0      | 0.083  | 5.1     | LOS A    | 0.4      | 3.1      | 0.41   | 0.63      | 0.41      | 33.5 |
| 9      | R2       | 92                    | 0.0      | 0.083  | 10.1    | LOS A    | 0.4      | 3.1      | 0.41   | 0.63      | 0.41      | 25.9 |
| Appro  | ach      | 96                    | 0.0      | 0.083  | 9.9     | LOS A    | 0.4      | 3.1      | 0.41   | 0.63      | 0.41      | 26.5 |
| South  | West: S  | outh West C           | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2       | 124                   | 0.0      | 0.216  | 3.7     | LOS A    | 1.4      | 9.8      | 0.07   | 0.43      | 0.07      | 45.1 |
| 11     | T1       | 200                   | 0.0      | 0.216  | 3.8     | LOS A    | 1.4      | 9.8      | 0.07   | 0.43      | 0.07      | 52.9 |
| 12     | R2       | 39                    | 0.0      | 0.216  | 8.9     | LOS A    | 1.4      | 9.8      | 0.07   | 0.43      | 0.07      | 41.3 |
| Appro  | bach     | 363                   | 0.0      | 0.216  | 4.3     | LOS A    | 1.4      | 9.8      | 0.07   | 0.43      | 0.07      | 49.7 |
| All Ve | hicles   | 697                   | 0.0      | 0.216  | 5.2     | LOS A    | 1.4      | 9.8      | 0.22   | 0.46      | 0.22      | 45.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 13 July 2020 3:04:24 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21674\_2041\_AAST\_AM]

Node: 21674 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:56:01 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21674\_2041\_AAST\_AM]

Node: 21674 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | erformanc            | e - Vel     | hicles |         |          |          |          |        |           |           |      |
|--------|----------|----------------------|-------------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand F             |             | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                | HV          | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Dr | veh/h<br>oposed Aber | %<br>methys | V/C    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | Last. Fr | oposeu Abei<br>1     | 0.0         | 0.005  | 2.6     | LOS A    | 0.0      | 0.2      | 0.10   | 0.46      | 0.10      | 40.5 |
| 2      | T1       | 4                    |             |        |         | LOS A    |          | 0.2      |        |           |           | 40.5 |
| _      |          |                      | 0.0         | 0.005  | 3.0     |          | 0.0      |          | 0.10   | 0.46      | 0.10      |      |
| 3      | R2       | 1                    | 0.0         | 0.005  | 6.8     | LOS A    | 0.0      | 0.2      | 0.10   | 0.46      | 0.10      | 47.6 |
| Appro  | ach      | 6                    | 0.0         | 0.005  | 3.5     | LOS A    | 0.0      | 0.2      | 0.10   | 0.46      | 0.10      | 46.3 |
| North  | East: No | rth East Roa         | ad          |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                    | 0.0         | 0.013  | 4.1     | LOS A    | 0.1      | 0.4      | 0.08   | 0.61      | 0.08      | 37.0 |
| 5      | T1       | 2                    | 0.0         | 0.013  | 4.4     | LOS A    | 0.1      | 0.4      | 0.08   | 0.61      | 0.08      | 38.4 |
| 6      | R2       | 14                   | 0.0         | 0.013  | 8.5     | LOS A    | 0.1      | 0.4      | 0.08   | 0.61      | 0.08      | 43.8 |
| Appro  | ach      | 17                   | 0.0         | 0.013  | 7.7     | LOS A    | 0.1      | 0.4      | 0.08   | 0.61      | 0.08      | 42.8 |
| North  | West: Pr | oposed Abei          | rnethys     | Lane   |         |          |          |          |        |           |           |      |
| 7      | L2       | 9                    | 0.0         | 0.014  | 4.1     | LOS A    | 0.1      | 0.5      | 0.04   | 0.49      | 0.04      | 46.5 |
| 8      | T1       | 9                    | 0.0         | 0.014  | 4.3     | LOS A    | 0.1      | 0.5      | 0.04   | 0.49      | 0.04      | 40.9 |
| 9      | R2       | 2                    | 0.0         | 0.014  | 8.4     | LOS A    | 0.1      | 0.5      | 0.04   | 0.49      | 0.04      | 34.5 |
| Appro  | ach      | 21                   | 0.0         | 0.014  | 4.6     | LOS A    | 0.1      | 0.5      | 0.04   | 0.49      | 0.04      | 43.0 |
| South  | West: Se | outh West Re         | oad         |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 6                    | 0.0         | 0.007  | 4.1     | LOS A    | 0.0      | 0.2      | 0.10   | 0.49      | 0.10      | 43.3 |
| 11     | T1       | 2                    | 0.0         | 0.007  | 4.4     | LOS A    | 0.0      | 0.2      | 0.10   | 0.49      | 0.10      | 47.1 |
| 12     | R2       | 1                    | 0.0         | 0.007  | 8.5     | LOS A    | 0.0      | 0.2      | 0.10   | 0.49      | 0.10      | 34.8 |
| Appro  | ach      | 9                    | 0.0         | 0.007  | 4.7     | LOS A    | 0.0      | 0.2      | 0.10   | 0.49      | 0.10      | 43.4 |
| All Ve | hicles   | 54                   | 0.0         | 0.014  | 5.5     | LOS A    | 0.1      | 0.5      | 0.07   | 0.52      | 0.07      | 43.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:44:31 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21674\_2041\_AAST\_PM]

Node: 21674 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | erformanc            | e - Vel     | hicles |         |          |          |          |        |           |           |       |
|--------|----------|----------------------|-------------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn     | Demand F             |             | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |          | Total                | HV          | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| South  | East: Pr | veh/h<br>oposed Abei | %<br>methys | V/C    | sec     |          | veh      | m        |        |           |           | km/h  |
| 1      | L2       | 0p0300 Abci<br>1     | 0.0         | 0.005  | 2.5     | LOS A    | 0.0      | 0.2      | 0.09   | 0.46      | 0.09      | 40.6  |
| 2      | T1       | 4                    | 0.0         | 0.005  | 3.0     | LOSA     | 0.0      | 0.2      | 0.09   | 0.46      | 0.09      | 47.3  |
| 2      | R2       | 4                    | 0.0         |        |         | LOSA     | 0.0      | 0.2      | 0.09   | 0.40      |           | 47.3  |
| -      |          |                      |             | 0.005  | 6.8     |          |          |          |        |           | 0.09      |       |
| Appro  | ach      | 6                    | 0.0         | 0.005  | 3.5     | LOS A    | 0.0      | 0.2      | 0.09   | 0.46      | 0.09      | 46.4  |
| North  | East: No | rth East Roa         | ad          |        |         |          |          |          |        |           |           |       |
| 4      | L2       | 1                    | 0.0         | 0.012  | 4.1     | LOS A    | 0.1      | 0.4      | 0.07   | 0.60      | 0.07      | 37.5  |
| 5      | T1       | 3                    | 0.0         | 0.012  | 4.4     | LOS A    | 0.1      | 0.4      | 0.07   | 0.60      | 0.07      | 38.8  |
| 6      | R2       | 12                   | 0.0         | 0.012  | 8.5     | LOS A    | 0.1      | 0.4      | 0.07   | 0.60      | 0.07      | 44.3  |
| Appro  | ach      | 16                   | 0.0         | 0.012  | 7.4     | LOS A    | 0.1      | 0.4      | 0.07   | 0.60      | 0.07      | 42.8  |
| North  | West: Pr | oposed Abe           | rnethys     | Lane   |         |          |          |          |        |           |           |       |
| 7      | L2       | 12                   | 0.0         | 0.015  | 4.1     | LOS A    | 0.1      | 0.5      | 0.05   | 0.48      | 0.05      | 46.8  |
| 8      | T1       | 8                    | 0.0         | 0.015  | 4.3     | LOS A    | 0.1      | 0.5      | 0.05   | 0.48      | 0.05      | 41.3  |
| 9      | R2       | 1                    | 0.0         | 0.015  | 8.5     | LOS A    | 0.1      | 0.5      | 0.05   | 0.48      | 0.05      | 34.6  |
| Appro  | ach      | 21                   | 0.0         | 0.015  | 4.4     | LOS A    | 0.1      | 0.5      | 0.05   | 0.48      | 0.05      | 44.3  |
| South  | West: So | outh West R          | oad         |        |         |          |          |          |        |           |           |       |
| 10     | L2       | 7                    | 0.0         | 0.009  | 4.1     | LOS A    | 0.0      | 0.3      | 0.09   | 0.48      | 0.09      | 43.4  |
| 11     | T1       | 3                    | 0.0         | 0.009  | 4.4     | LOS A    | 0.0      | 0.3      | 0.09   | 0.48      | 0.09      | 47.3  |
| 12     | R2       | 1                    | 0.0         | 0.009  | 8.5     | LOS A    | 0.0      | 0.3      | 0.09   | 0.48      | 0.09      | 35.0  |
| Appro  | ach      | 12                   | 0.0         | 0.009  | 4.6     | LOS A    | 0.0      | 0.3      | 0.09   | 0.48      | 0.09      | 43.9  |
| All Ve | hicles   | 55                   | 0.0         | 0.015  | 5.2     | LOS A    | 0.1      | 0.5      | 0.07   | 0.51      | 0.07      | 43.9  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:44:32 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21692\_2041\_AAST\_AM]

Node: 21692 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:58:33 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21692\_2041\_AAST\_AM]

Node: 21692 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | e - Vel | hicles |         |          |          |          |        |           |           |       |
|--------|----------|-----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn     | Demand I              |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |          | Total                 | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| South  | Coot: Ab | veh/h<br>pernethys La | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h  |
|        |          | ,                     |         | 0.050  |         |          |          | 4.0      | 0.04   | 0.40      | 0.04      | 40.0  |
| 1      | L2       | 1                     | 0.0     | 0.050  | 2.2     | LOS A    | 0.3      | 1.9      | 0.04   | 0.40      | 0.04      | 40.0  |
| 2      | T1       | 72                    | 0.0     | 0.050  | 2.6     | LOS A    | 0.3      | 1.9      | 0.04   | 0.40      | 0.04      | 41.8  |
| 3      | R2       | 9                     | 0.0     | 0.050  | 7.2     | LOS A    | 0.3      | 1.9      | 0.04   | 0.40      | 0.04      | 37.6  |
| Appro  | ach      | 82                    | 0.0     | 0.050  | 3.1     | LOS A    | 0.3      | 1.9      | 0.04   | 0.40      | 0.04      | 41.3  |
| North  | East: NN | IE Road               |         |        |         |          |          |          |        |           |           |       |
| 4      | L2       | 16                    | 0.0     | 0.015  | 3.3     | LOS A    | 0.1      | 0.5      | 0.24   | 0.43      | 0.24      | 36.0  |
| 5      | T1       | 2                     | 0.0     | 0.015  | 3.5     | LOS A    | 0.1      | 0.5      | 0.24   | 0.43      | 0.24      | 39.4  |
| 6      | R2       | 1                     | 0.0     | 0.015  | 8.4     | LOS A    | 0.1      | 0.5      | 0.24   | 0.43      | 0.24      | 37.0  |
| Appro  | ach      | 19                    | 0.0     | 0.015  | 3.6     | LOS A    | 0.1      | 0.5      | 0.24   | 0.43      | 0.24      | 36.5  |
| North  | West: Ab | pernethys La          | ine     |        |         |          |          |          |        |           |           |       |
| 7      | L2       | 1                     | 0.0     | 0.060  | 3.2     | LOS A    | 0.3      | 2.2      | 0.07   | 0.37      | 0.07      | 40.5  |
| 8      | T1       | 91                    | 0.0     | 0.060  | 3.4     | LOS A    | 0.3      | 2.2      | 0.07   | 0.37      | 0.07      | 40.2  |
| 9      | R2       | 1                     | 0.0     | 0.060  | 8.5     | LOS A    | 0.3      | 2.2      | 0.07   | 0.37      | 0.07      | 39.2  |
| Appro  | ach      | 93                    | 0.0     | 0.060  | 3.5     | LOS A    | 0.3      | 2.2      | 0.07   | 0.37      | 0.07      | 40.2  |
| South  | West: S  | SW Road               |         |        |         |          |          |          |        |           |           |       |
| 10     | L2       | 1                     | 0.0     | 0.002  | 3.4     | LOS A    | 0.0      | 0.1      | 0.22   | 0.47      | 0.22      | 36.8  |
| 11     | T1       | 1                     | 0.0     | 0.002  | 3.6     | LOS A    | 0.0      | 0.1      | 0.22   | 0.47      | 0.22      | 36.8  |
| 12     | R2       | 1                     | 0.0     | 0.002  | 8.6     | LOS A    | 0.0      | 0.1      | 0.22   | 0.47      | 0.22      | 33.1  |
| Appro  | ach      | 3                     | 0.0     | 0.002  | 5.2     | LOS A    | 0.0      | 0.1      | 0.22   | 0.47      | 0.22      | 35.6  |
| All Ve | hicles   | 197                   | 0.0     | 0.060  | 3.4     | LOS A    | 0.3      | 2.2      | 0.08   | 0.39      | 0.08      | 40.2  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:02:45 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21692\_2041\_AAST\_PM]

Node: 21692 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | erformanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand F             |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | Fast: Δh | veh/h<br>ernethys La | %<br>ne | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2       | lenneunys ∟a<br>1    | 0.0     | 0.057  | 2.2     | LOS A    | 0.3      | 2.1      | 0.03   | 0.42      | 0.03      | 39.8 |
| 2      | T1       | 80                   | 0.0     | 0.057  | 2.2     | LOSA     | 0.3      | 2.1      | 0.03   | 0.42      | 0.03      | 41.5 |
|        |          |                      |         |        |         |          |          |          |        |           |           |      |
| 3      | R2       | 14                   | 0.0     | 0.057  | 7.2     | LOS A    | 0.3      | 2.1      | 0.03   | 0.42      | 0.03      | 37.4 |
| Appro  | bach     | 95                   | 0.0     | 0.057  | 3.3     | LOS A    | 0.3      | 2.1      | 0.03   | 0.42      | 0.03      | 40.9 |
| North  | East: NN | IE Road              |         |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 12                   | 0.0     | 0.010  | 3.2     | LOS A    | 0.1      | 0.4      | 0.21   | 0.43      | 0.21      | 36.1 |
| 5      | T1       | 1                    | 0.0     | 0.010  | 3.4     | LOS A    | 0.1      | 0.4      | 0.21   | 0.43      | 0.21      | 39.5 |
| 6      | R2       | 1                    | 0.0     | 0.010  | 8.3     | LOS A    | 0.1      | 0.4      | 0.21   | 0.43      | 0.21      | 37.1 |
| Appro  | bach     | 14                   | 0.0     | 0.010  | 3.6     | LOS A    | 0.1      | 0.4      | 0.21   | 0.43      | 0.21      | 36.5 |
| North  | Wost Ak  | pernethys La         | no      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | l 1                  | 0.0     | 0.046  | 3.3     | LOS A    | 0.2      | 1.7      | 0.09   | 0.37      | 0.09      | 40.3 |
| -      |          | •                    |         |        |         |          |          |          |        |           |           |      |
| 8      | T1       | 67                   | 0.0     | 0.046  | 3.5     | LOS A    | 0.2      | 1.7      | 0.09   | 0.37      | 0.09      | 40.0 |
| 9      | R2       | 1                    | 0.0     | 0.046  | 8.5     | LOS A    | 0.2      | 1.7      | 0.09   | 0.37      | 0.09      | 39.0 |
| Appro  | bach     | 69                   | 0.0     | 0.046  | 3.5     | LOS A    | 0.2      | 1.7      | 0.09   | 0.37      | 0.09      | 40.0 |
| South  | West: S  | SW Road              |         |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                    | 0.0     | 0.002  | 3.4     | LOS A    | 0.0      | 0.1      | 0.24   | 0.47      | 0.24      | 36.7 |
| 11     | T1       | 1                    | 0.0     | 0.002  | 3.7     | LOS A    | 0.0      | 0.1      | 0.24   | 0.47      | 0.24      | 36.7 |
| 12     | R2       | 1                    | 0.0     | 0.002  | 8.7     | LOS A    | 0.0      | 0.1      | 0.24   | 0.47      | 0.24      | 33.0 |
| Appro  | bach     | 3                    | 0.0     | 0.002  | 5.2     | LOS A    | 0.0      | 0.1      | 0.24   | 0.47      | 0.24      | 35.5 |
| All Ve | hicles   | 181                  | 0.0     | 0.057  | 3.4     | LOS A    | 0.3      | 2.1      | 0.07   | 0.40      | 0.07      | 40.1 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:02:46 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21693\_2041\_AAST\_AM]

Node: 21693 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:55:19 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21693\_2041\_AAST\_AM]

Node: 21693 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move     | ement F  | Performanc            | e - Vel | hicles |            |          |          |          |        |           |           |      |
|----------|----------|-----------------------|---------|--------|------------|----------|----------|----------|--------|-----------|-----------|------|
| Mov      | Turn     | Demand F              |         | Deg.   | Average    | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID       |          | Total                 | HV      | Satn   | Delay      | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South    | East: Ah | veh/h<br>pernethys La | %<br>no | v/c    | sec        | _        | veh      | m        | _      | _         | _         | km/h |
| 2        | T1       | 1                     | 0.0     | 0.002  | 4.4        | LOS A    | 0.0      | 0.1      | 0.09   | 0.57      | 0.09      | 40.7 |
| 2<br>23a | R1       | 1                     | 0.0     | 0.002  | 4.4<br>7.6 | LOSA     | 0.0      | 0.1      | 0.09   | 0.57      | 0.09      | 31.7 |
|          |          | -                     |         |        |            |          |          |          |        |           |           |      |
| 23b      | R3       | 1                     | 0.0     | 0.002  | 9.5        | LOS A    | 0.0      | 0.1      | 0.09   | 0.57      | 0.09      | 32.6 |
| Appro    | ach      | 3                     | 0.0     | 0.002  | 7.1        | LOS A    | 0.0      | 0.1      | 0.09   | 0.57      | 0.09      | 35.1 |
| East:    | East Ro  | ad                    |         |        |            |          |          |          |        |           |           |      |
| 4b       | L3       | 1                     | 0.0     | 0.012  | 3.4        | LOS A    | 0.1      | 0.4      | 0.03   | 0.62      | 0.03      | 34.2 |
| 6a       | R1       | 16                    | 0.0     | 0.012  | 6.5        | LOS A    | 0.1      | 0.4      | 0.03   | 0.62      | 0.03      | 39.2 |
| 6        | R2       | 1                     | 0.0     | 0.012  | 7.4        | LOS A    | 0.1      | 0.4      | 0.03   | 0.62      | 0.03      | 30.2 |
| Appro    | ach      | 18                    | 0.0     | 0.012  | 6.4        | LOS A    | 0.1      | 0.4      | 0.03   | 0.62      | 0.03      | 38.4 |
|          |          |                       |         |        |            |          |          |          |        |           |           |      |
|          | North F  |                       | 0.0     | 0.000  | 0.0        | 100.4    | 0.0      | 0.4      | 0.07   | 0.54      | 0.07      | 04.0 |
| 7        | L2       | 1                     | 0.0     | 0.002  | 2.6        | LOS A    | 0.0      | 0.1      | 0.07   | 0.54      | 0.07      | 34.3 |
| 7a       | L1       | 1                     | 0.0     | 0.002  | 2.7        | LOS A    | 0.0      | 0.1      | 0.07   | 0.54      | 0.07      | 38.1 |
| 9b       | R3       | 1                     | 0.0     | 0.002  | 7.8        | LOS A    | 0.0      | 0.1      | 0.07   | 0.54      | 0.07      | 38.0 |
| Appro    | ach      | 3                     | 0.0     | 0.002  | 4.4        | LOS A    | 0.0      | 0.1      | 0.07   | 0.54      | 0.07      | 36.9 |
| North    | West: No | orth West Ro          | ad      |        |            |          |          |          |        |           |           |      |
| 27b      | L3       | 1                     | 0.0     | 0.008  | 4.4        | LOS A    | 0.0      | 0.3      | 0.03   | 0.44      | 0.03      | 39.1 |
| 27a      | L1       | 9                     | 0.0     | 0.008  | 3.9        | LOS A    | 0.0      | 0.3      | 0.03   | 0.44      | 0.03      | 41.4 |
| 8        | T1       | 1                     | 0.0     | 0.008  | 4.3        | LOS A    | 0.0      | 0.3      | 0.03   | 0.44      | 0.03      | 43.1 |
| Appro    | ach      | 12                    | 0.0     | 0.008  | 4.0        | LOS A    | 0.0      | 0.3      | 0.03   | 0.44      | 0.03      | 41.4 |
| All Ve   | hicles   | 36                    | 0.0     | 0.012  | 5.5        | LOS A    | 0.1      | 0.4      | 0.04   | 0.55      | 0.04      | 38.9 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 11:47:30 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21693\_2041\_AAST\_PM]

Node: 21693 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move     | ement F  | Performanc            | e - Vel | hicles |            |          |          |          |        |           |           |      |
|----------|----------|-----------------------|---------|--------|------------|----------|----------|----------|--------|-----------|-----------|------|
| Mov      | Turn     | Demand F              |         | Deg.   | Average    | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID       |          | Total                 | HV      | Satn   | Delay      | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South    | East: Ar | veh/h<br>pernethys La | %       | v/c    | sec        | _        | veh      | m        | _      | _         | _         | km/h |
| 2        | T1       | 1                     | 0.0     | 0.002  | 4.3        | LOS A    | 0.0      | 0.1      | 0.07   | 0.58      | 0.07      | 40.8 |
| 2<br>23a | R1       | 1                     | 0.0     | 0.002  | 4.5<br>7.5 | LOSA     | 0.0      | 0.1      | 0.07   | 0.58      | 0.07      | 31.9 |
|          |          | -                     |         |        |            |          |          |          |        |           |           |      |
| 23b      | R3       | 1                     | 0.0     | 0.002  | 9.4        | LOS A    | 0.0      | 0.1      | 0.07   | 0.58      | 0.07      | 32.8 |
| Appro    | ach      | 3                     | 0.0     | 0.002  | 7.1        | LOS A    | 0.0      | 0.1      | 0.07   | 0.58      | 0.07      | 35.3 |
| East:    | East Ro  | ad                    |         |        |            |          |          |          |        |           |           |      |
| 4b       | L3       | 1                     | 0.0     | 0.008  | 3.4        | LOS A    | 0.0      | 0.3      | 0.03   | 0.62      | 0.03      | 34.3 |
| 6a       | R1       | 9                     | 0.0     | 0.008  | 6.5        | LOS A    | 0.0      | 0.3      | 0.03   | 0.62      | 0.03      | 39.3 |
| 6        | R2       | 1                     | 0.0     | 0.008  | 7.4        | LOS A    | 0.0      | 0.3      | 0.03   | 0.62      | 0.03      | 30.2 |
| Appro    | ach      | 12                    | 0.0     | 0.008  | 6.3        | LOS A    | 0.0      | 0.3      | 0.03   | 0.62      | 0.03      | 38.1 |
|          |          |                       |         |        |            |          |          |          |        |           |           |      |
|          | North F  |                       |         |        |            |          |          |          |        |           |           |      |
| 7        | L2       | 1                     | 0.0     | 0.002  | 2.7        | LOS A    | 0.0      | 0.1      | 0.09   | 0.53      | 0.09      | 34.2 |
| 7a       | L1       | 1                     | 0.0     | 0.002  | 2.7        | LOS A    | 0.0      | 0.1      | 0.09   | 0.53      | 0.09      | 37.9 |
| 9b       | R3       | 1                     | 0.0     | 0.002  | 7.9        | LOS A    | 0.0      | 0.1      | 0.09   | 0.53      | 0.09      | 37.9 |
| Appro    | ach      | 3                     | 0.0     | 0.002  | 4.4        | LOS A    | 0.0      | 0.1      | 0.09   | 0.53      | 0.09      | 36.8 |
| North    | West: N  | orth West Ro          | bad     |        |            |          |          |          |        |           |           |      |
| 27b      | L3       | 1                     | 0.0     | 0.011  | 4.4        | LOS A    | 0.1      | 0.4      | 0.03   | 0.44      | 0.03      | 39.2 |
| 27a      | L1       | 15                    | 0.0     | 0.011  | 3.9        | LOS A    | 0.1      | 0.4      | 0.03   | 0.44      | 0.03      | 41.5 |
| 8        | T1       | 1                     | 0.0     | 0.011  | 4.3        | LOS A    | 0.1      | 0.4      | 0.03   | 0.44      | 0.03      | 43.2 |
| Appro    | ach      | 17                    | 0.0     | 0.011  | 4.0        | LOS A    | 0.1      | 0.4      | 0.03   | 0.44      | 0.03      | 41.4 |
| All Ve   | hicles   | 35                    | 0.0     | 0.011  | 5.1        | LOS A    | 0.1      | 0.4      | 0.04   | 0.52      | 0.04      | 39.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 11:47:31 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21695\_2041\_AAST\_AM]

Node: 21695 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:56:18 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21695\_2041\_AAST\_AM]

Node: 21695 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F        | erformanc             | ce - Vel | nicles |         |          |          |          |        |           |           |      |
|--------|----------------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn           | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |                | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: So       | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | Last. St<br>L2 | 7                     | 0.0      | 0.016  | 4.0     | LOS A    | 0.1      | 0.6      | 0.36   | 0.55      | 0.36      | 44.7 |
| -      | τ1             | ,<br>1                | 0.0      | 0.010  | 4.0     | LOSA     | 0.1      |          |        | 0.55      |           | 36.7 |
| 2      |                | -                     |          |        |         |          |          | 0.6      | 0.36   |           | 0.36      |      |
| 3      | R2             | 11                    | 0.0      | 0.016  | 9.3     | LOS A    | 0.1      | 0.6      | 0.36   | 0.55      | 0.36      | 37.2 |
| Appro  | ach            | 19                    | 0.0      | 0.016  | 6.9     | LOS A    | 0.1      | 0.6      | 0.36   | 0.55      | 0.36      | 40.5 |
| North  | East: No       | rth East Col          | lector R | oad    |         |          |          |          |        |           |           |      |
| 4      | L2             | 13                    | 0.0      | 0.127  | 3.7     | LOS A    | 0.8      | 5.3      | 0.11   | 0.38      | 0.11      | 42.5 |
| 5      | T1             | 178                   | 0.0      | 0.127  | 3.9     | LOS A    | 0.8      | 5.3      | 0.11   | 0.38      | 0.11      | 53.0 |
| 6      | R2             | 6                     | 0.0      | 0.127  | 9.0     | LOS A    | 0.8      | 5.3      | 0.11   | 0.38      | 0.11      | 42.2 |
| Appro  | ach            | 197                   | 0.0      | 0.127  | 4.1     | LOS A    | 0.8      | 5.3      | 0.11   | 0.38      | 0.11      | 52.3 |
| North  | West: No       | orth West Ro          | bad      |        |         |          |          |          |        |           |           |      |
| 7      | L2             | 6                     | 0.0      | 0.019  | 4.4     | LOS A    | 0.1      | 0.7      | 0.32   | 0.56      | 0.32      | 38.9 |
| 8      | T1             | 1                     | 0.0      | 0.019  | 4.5     | LOS A    | 0.1      | 0.7      | 0.32   | 0.56      | 0.32      | 34.8 |
| 9      | R2             | 16                    | 0.0      | 0.019  | 9.6     | LOS A    | 0.1      | 0.7      | 0.32   | 0.56      | 0.32      | 46.4 |
| Appro  | ach            | 23                    | 0.0      | 0.019  | 8.0     | LOS A    | 0.1      | 0.7      | 0.32   | 0.56      | 0.32      | 44.2 |
| South  | West: Se       | outh West C           | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2             | 7                     | 0.0      | 0.099  | 3.7     | LOS A    | 0.6      | 4.0      | 0.10   | 0.38      | 0.10      | 49.6 |
| 11     | T1             | 142                   | 0.0      | 0.099  | 3.9     | LOS A    | 0.6      | 4.0      | 0.10   | 0.38      | 0.10      | 53.2 |
| 12     | R2             | 3                     | 0.0      | 0.099  | 9.0     | LOS A    | 0.6      | 4.0      | 0.10   | 0.38      | 0.10      | 46.3 |
| Appro  | ach            | 153                   | 0.0      | 0.099  | 4.0     | LOS A    | 0.6      | 4.0      | 0.10   | 0.38      | 0.10      | 52.9 |
| All Ve | hicles         | 392                   | 0.0      | 0.127  | 4.4     | LOS A    | 0.8      | 5.3      | 0.13   | 0.40      | 0.13      | 51.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:11:15 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21695\_2041\_AAST\_PM]

Node: 21695 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | ce - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | Foot: So | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        |          |                       |          | 0.000  | 4.0     |          | 0.4      | 0.0      | 0.00   | 0.54      | 0.00      | 45.4 |
| 1      | L2       | 14                    | 0.0      | 0.023  | 4.0     | LOS A    | 0.1      | 0.8      | 0.36   | 0.54      | 0.36      | 45.4 |
| 2      | T1       | 1                     | 0.0      | 0.023  | 4.2     | LOS A    | 0.1      | 0.8      | 0.36   | 0.54      | 0.36      | 37.3 |
| 3      | R2       | 13                    | 0.0      | 0.023  | 9.2     | LOS A    | 0.1      | 0.8      | 0.36   | 0.54      | 0.36      | 37.8 |
| Appro  | bach     | 27                    | 0.0      | 0.023  | 6.4     | LOS A    | 0.1      | 0.8      | 0.36   | 0.54      | 0.36      | 42.0 |
| North  | East: No | orth East Col         | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2       | 13                    | 0.0      | 0.123  | 3.7     | LOS A    | 0.7      | 5.1      | 0.09   | 0.38      | 0.09      | 42.7 |
| 5      | T1       | 176                   | 0.0      | 0.123  | 3.9     | LOS A    | 0.7      | 5.1      | 0.09   | 0.38      | 0.09      | 53.2 |
| 6      | R2       | 7                     | 0.0      | 0.123  | 9.0     | LOS A    | 0.7      | 5.1      | 0.09   | 0.38      | 0.09      | 42.4 |
| Appro  | bach     | 196                   | 0.0      | 0.123  | 4.1     | LOS A    | 0.7      | 5.1      | 0.09   | 0.38      | 0.09      | 52.4 |
| North  | West: No | orth West Ro          | bad      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 6                     | 0.0      | 0.014  | 4.6     | LOS A    | 0.1      | 0.5      | 0.37   | 0.55      | 0.37      | 39.3 |
| 8      | T1       | 1                     | 0.0      | 0.014  | 4.8     | LOS A    | 0.1      | 0.5      | 0.37   | 0.55      | 0.37      | 35.2 |
| 9      | R2       | 9                     | 0.0      | 0.014  | 9.9     | LOS A    | 0.1      | 0.5      | 0.37   | 0.55      | 0.37      | 47.0 |
| Appro  | bach     | 17                    | 0.0      | 0.014  | 7.6     | LOS A    | 0.1      | 0.5      | 0.37   | 0.55      | 0.37      | 43.8 |
| South  | West: Se | outh West C           | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2       | 12                    | 0.0      | 0.132  | 3.7     | LOS A    | 0.8      | 5.5      | 0.11   | 0.38      | 0.11      | 49.4 |
| 11     | T1       | 188                   | 0.0      | 0.132  | 3.9     | LOS A    | 0.8      | 5.5      | 0.11   | 0.38      | 0.11      | 53.1 |
| 12     | R2       | 4                     | 0.0      | 0.132  | 9.0     | LOS A    | 0.8      | 5.5      | 0.11   | 0.38      | 0.11      | 46.2 |
| Appro  | bach     | 204                   | 0.0      | 0.132  | 4.0     | LOS A    | 0.8      | 5.5      | 0.11   | 0.38      | 0.11      | 52.7 |
| All Ve | hicles   | 444                   | 0.0      | 0.132  | 4.3     | LOS A    | 0.8      | 5.5      | 0.13   | 0.40      | 0.13      | 51.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:11:15 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21696\_2041\_AAST\_AM]

Node: 21696 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:56:13 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21696\_2041\_AAST\_AM]

Node: 21696 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | ce - Vel | nicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Sc | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        | L2       | 7 סטנוז במזג ועט      | 0.0      | 0.008  | 3.9     | LOS A    | 0.0      | 0.3      | 0.35   | 0.46      | 0.35      | 43.0 |
| 1      |          | -                     |          |        |         |          |          |          |        |           |           |      |
| 2      | T1       | 1                     | 0.0      | 0.008  | 4.1     | LOS A    | 0.0      | 0.3      | 0.35   | 0.46      | 0.35      | 38.6 |
| 3      | R2       | 1                     | 0.0      | 0.008  | 9.1     | LOS A    | 0.0      | 0.3      | 0.35   | 0.46      | 0.35      | 35.6 |
| Appro  | bach     | 9                     | 0.0      | 0.008  | 4.5     | LOS A    | 0.0      | 0.3      | 0.35   | 0.46      | 0.35      | 41.8 |
| North  | East: No | orth East Col         | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                     | 0.0      | 0.118  | 3.2     | LOS A    | 0.7      | 4.6      | 0.07   | 0.36      | 0.07      | 40.9 |
| 5      | T1       | 188                   | 0.0      | 0.118  | 3.4     | LOS A    | 0.7      | 4.6      | 0.07   | 0.36      | 0.07      | 51.2 |
| 6      | R2       | 1                     | 0.0      | 0.118  | 8.4     | LOS A    | 0.7      | 4.6      | 0.07   | 0.36      | 0.07      | 39.9 |
| Appro  | bach     | 191                   | 0.0      | 0.118  | 3.4     | LOS A    | 0.7      | 4.6      | 0.07   | 0.36      | 0.07      | 51.0 |
| North  | West: No | orth West Ro          | bad      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                     | 0.0      | 0.003  | 4.0     | LOS A    | 0.0      | 0.1      | 0.32   | 0.48      | 0.32      | 36.0 |
| 8      | T1       | 1                     | 0.0      | 0.003  | 4.2     | LOS A    | 0.0      | 0.1      | 0.32   | 0.48      | 0.32      | 36.4 |
| 9      | R2       | 1                     | 0.0      | 0.003  | 9.3     | LOS A    | 0.0      | 0.1      | 0.32   | 0.48      | 0.32      | 38.7 |
| Appro  | bach     | 3                     | 0.0      | 0.003  | 5.8     | LOS A    | 0.0      | 0.1      | 0.32   | 0.48      | 0.32      | 37.2 |
| South  | West: S  | outh West C           | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                     | 0.0      | 0.094  | 3.7     | LOS A    | 0.5      | 3.8      | 0.03   | 0.39      | 0.03      | 43.6 |
| 11     | T1       | 151                   | 0.0      | 0.094  | 3.8     | LOS A    | 0.5      | 3.8      | 0.03   | 0.39      | 0.03      | 44.3 |
| 12     | R2       | 8                     | 0.0      | 0.094  | 8.9     | LOS A    | 0.5      | 3.8      | 0.03   | 0.39      | 0.03      | 41.6 |
| Appro  | bach     | 160                   | 0.0      | 0.094  | 4.1     | LOS A    | 0.5      | 3.8      | 0.03   | 0.39      | 0.03      | 44.1 |
| All Ve | hicles   | 363                   | 0.0      | 0.118  | 3.8     | LOS A    | 0.7      | 4.6      | 0.06   | 0.38      | 0.06      | 47.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:08:37 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21696\_2041\_AAST\_PM]

Node: 21696 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | Performanc            | ce - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | Foot: So | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        |          |                       |          | 0.040  | 0.0     |          | 0.4      | 0.4      | 0.04   | 0.40      | 0.04      | 40.4 |
| 1      | L2       | 13                    | 0.0      | 0.012  | 3.8     | LOSA     | 0.1      | 0.4      | 0.34   | 0.46      | 0.34      | 43.4 |
| 2      | T1       | 1                     | 0.0      | 0.012  | 4.1     | LOS A    | 0.1      | 0.4      | 0.34   | 0.46      | 0.34      | 39.0 |
| 3      | R2       | 1                     | 0.0      | 0.012  | 9.1     | LOS A    | 0.1      | 0.4      | 0.34   | 0.46      | 0.34      | 35.9 |
| Appro  | bach     | 15                    | 0.0      | 0.012  | 4.2     | LOS A    | 0.1      | 0.4      | 0.34   | 0.46      | 0.34      | 42.6 |
| North  | East: No | orth East Col         | lector R | load   |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                     | 0.0      | 0.113  | 3.2     | LOS A    | 0.6      | 4.4      | 0.07   | 0.36      | 0.07      | 41.0 |
| 5      | T1       | 182                   | 0.0      | 0.113  | 3.4     | LOS A    | 0.6      | 4.4      | 0.07   | 0.36      | 0.07      | 51.2 |
| 6      | R2       | 1                     | 0.0      | 0.113  | 8.4     | LOS A    | 0.6      | 4.4      | 0.07   | 0.36      | 0.07      | 39.9 |
| Appro  | bach     | 184                   | 0.0      | 0.113  | 3.4     | LOS A    | 0.6      | 4.4      | 0.07   | 0.36      | 0.07      | 51.1 |
| North  | West: No | orth West Ro          | bad      |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                     | 0.0      | 0.003  | 4.2     | LOS A    | 0.0      | 0.1      | 0.36   | 0.48      | 0.36      | 35.6 |
| 8      | T1       | 1                     | 0.0      | 0.003  | 4.4     | LOS A    | 0.0      | 0.1      | 0.36   | 0.48      | 0.36      | 36.1 |
| 9      | R2       | 1                     | 0.0      | 0.003  | 9.5     | LOS A    | 0.0      | 0.1      | 0.36   | 0.48      | 0.36      | 38.4 |
| Appro  | bach     | 3                     | 0.0      | 0.003  | 6.0     | LOS A    | 0.0      | 0.1      | 0.36   | 0.48      | 0.36      | 36.8 |
| South  | West: Se | outh West C           | ollector | Road   |         |          |          |          |        |           |           |      |
| 10     | L2       | 2                     | 0.0      | 0.121  | 3.7     | LOS A    | 0.7      | 5.0      | 0.04   | 0.39      | 0.04      | 43.7 |
| 11     | T1       | 198                   | 0.0      | 0.121  | 3.8     | LOS A    | 0.7      | 5.0      | 0.04   | 0.39      | 0.04      | 44.5 |
| 12     | R2       | 7                     | 0.0      | 0.121  | 8.9     | LOS A    | 0.7      | 5.0      | 0.04   | 0.39      | 0.04      | 41.8 |
| Appro  | bach     | 207                   | 0.0      | 0.121  | 4.0     | LOS A    | 0.7      | 5.0      | 0.04   | 0.39      | 0.04      | 44.3 |
| All Ve | hicles   | 409                   | 0.0      | 0.121  | 3.8     | LOS A    | 0.7      | 5.0      | 0.06   | 0.38      | 0.06      | 47.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:08:38 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

₩ Site: 101 [21697\_2041\_AAST\_AM]

Node: 21697 2041 AAST AM Peak Period Site Category: (None) Roundabout



## ₩ Site: 101 [21697\_2041\_AAST\_AM]

Node: 21697 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F | Performanc            | e - Vel   | hicles |         |          |          |          |        |           |           |      |
|--------|---------|-----------------------|-----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn    | Demand F              |           | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |         | Total                 | HV        | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | South   | veh/h<br>Collector Ro | %<br>ad   | v/c    | sec     |          | veh      | m        |        |           |           | km/r |
| 1b     | L3      |                       | au<br>0.0 | 0.055  | 3.5     | LOS A    | 0.3      | 2.0      | 0.09   | 0.37      | 0.09      | 40.3 |
| 2      | τ1      | 80                    | 0.0       | 0.055  | 3.5     | LOSA     | 0.3      | 2.0      | 0.09   | 0.37      | 0.09      | 43.0 |
|        | R2      | 1                     | 0.0       |        |         |          |          |          |        |           |           |      |
| 3      |         | •                     |           | 0.055  | 8.6     | LOS A    | 0.3      | 2.0      | 0.09   | 0.37      | 0.09      | 41.3 |
| Appro  | ach     | 82                    | 0.0       | 0.055  | 3.5     | LOS A    | 0.3      | 2.0      | 0.09   | 0.37      | 0.09      | 42.9 |
| East:  | East Co | llector Road          |           |        |         |          |          |          |        |           |           |      |
| 4      | L2      | 1                     | 0.0       | 0.004  | 4.2     | LOS A    | 0.0      | 0.1      | 0.28   | 0.53      | 0.28      | 35.9 |
| 4a     | L1      | 1                     | 0.0       | 0.004  | 4.0     | LOS A    | 0.0      | 0.1      | 0.28   | 0.53      | 0.28      | 36.6 |
| 6      | R2      | 3                     | 0.0       | 0.004  | 9.5     | LOS A    | 0.0      | 0.1      | 0.28   | 0.53      | 0.28      | 35.5 |
| Appro  | ach     | 5                     | 0.0       | 0.004  | 7.3     | LOS A    | 0.0      | 0.1      | 0.28   | 0.53      | 0.28      | 35.8 |
| North: | North C | Collector Roa         | ad        |        |         |          |          |          |        |           |           |      |
| 7      | L2      | 6                     | 0.0       | 0.080  | 3.5     | LOS A    | 0.4      | 3.1      | 0.03   | 0.40      | 0.03      | 44.8 |
| 8      | T1      | 116                   | 0.0       | 0.080  | 3.7     | LOS A    | 0.4      | 3.1      | 0.03   | 0.40      | 0.03      | 42.3 |
| 9a     | R1      | 13                    | 0.0       | 0.080  | 7.8     | LOS A    | 0.4      | 3.1      | 0.03   | 0.40      | 0.03      | 37.8 |
| Appro  | ach     | 135                   | 0.0       | 0.080  | 4.1     | LOS A    | 0.4      | 3.1      | 0.03   | 0.40      | 0.03      | 41.9 |
| South  | West: S | outh West R           | oad       |        |         |          |          |          |        |           |           |      |
| 30a    | L1      | 21                    | 0.0       | 0.018  | 3.4     | LOS A    | 0.1      | 0.6      | 0.23   | 0.41      | 0.23      | 41.1 |
| 32a    | R1      | 1                     | 0.0       | 0.018  | 7.8     | LOS A    | 0.1      | 0.6      | 0.23   | 0.41      | 0.23      | 39.7 |
| 32b    | R3      | 1                     | 0.0       | 0.018  | 10.0    | LOS A    | 0.1      | 0.6      | 0.23   | 0.41      | 0.23      | 37.7 |
| Appro  | ach     | 23                    | 0.0       | 0.018  | 3.9     | LOS A    | 0.1      | 0.6      | 0.23   | 0.41      | 0.23      | 40.9 |
| All Ve | hicles  | 245                   | 0.0       | 0.080  | 3.9     | LOS A    | 0.4      | 3.1      | 0.08   | 0.40      | 0.08      | 42.0 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:55 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21697\_2041\_AAST\_PM]

Node: 21697 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ement F   | Performanc                 | e - Vel          | hicles              |                         |                     |                             |                           |                 |                        |                     |         |
|-----------|-----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|---------|
| Mov<br>ID | Turn      | Demand F<br>Total<br>veh/h | lows=<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |         |
| South     | : South   | Collector Ro               |                  | v/C                 | Sec                     |                     | Ven                         | 111                       | _               |                        |                     | K111/11 |
| 1b        | L3        | 1                          | 0.0              | 0.074               | 3.5                     | LOS A               | 0.4                         | 2.8                       | 0.11            | 0.37                   | 0.11                | 40.0    |
| 2         | T1        | 108                        | 0.0              | 0.074               | 3.5                     | LOS A               | 0.4                         | 2.8                       | 0.11            | 0.37                   | 0.11                | 42.7    |
| 3         | R2        | 1                          | 0.0              | 0.074               | 8.6                     | LOS A               | 0.4                         | 2.8                       | 0.11            | 0.37                   | 0.11                | 41.1    |
| Appro     | ach       | 111                        | 0.0              | 0.074               | 3.6                     | LOS A               | 0.4                         | 2.8                       | 0.11            | 0.37                   | 0.11                | 42.7    |
| East:     | East Co   | llector Road               |                  |                     |                         |                     |                             |                           |                 |                        |                     |         |
| 4         | L2        | 1                          | 0.0              | 0.006               | 4.2                     | LOS A               | 0.0                         | 0.2                       | 0.27            | 0.55                   | 0.27                | 35.3    |
| 4a        | L1        | 1                          | 0.0              | 0.006               | 4.0                     | LOS A               | 0.0                         | 0.2                       | 0.27            | 0.55                   | 0.27                | 36.0    |
| 6         | R2        | 5                          | 0.0              | 0.006               | 9.4                     | LOS A               | 0.0                         | 0.2                       | 0.27            | 0.55                   | 0.27                | 35.0    |
| Appro     | ach       | 7                          | 0.0              | 0.006               | 7.9                     | LOS A               | 0.0                         | 0.2                       | 0.27            | 0.55                   | 0.27                | 35.1    |
| North     | : North C | Collector Roa              | ad               |                     |                         |                     |                             |                           |                 |                        |                     |         |
| 7         | L2        | 3                          | 0.0              | 0.070               | 3.5                     | LOS A               | 0.4                         | 2.7                       | 0.03            | 0.42                   | 0.03                | 44.3    |
| 8         | T1        | 96                         | 0.0              | 0.070               | 3.7                     | LOS A               | 0.4                         | 2.7                       | 0.03            | 0.42                   | 0.03                | 41.8    |
| 9a        | R1        | 18                         | 0.0              | 0.070               | 7.8                     | LOS A               | 0.4                         | 2.7                       | 0.03            | 0.42                   | 0.03                | 37.4    |
| Appro     | ach       | 117                        | 0.0              | 0.070               | 4.3                     | LOS A               | 0.4                         | 2.7                       | 0.03            | 0.42                   | 0.03                | 41.1    |
| South     | West: S   | outh West R                | oad              |                     |                         |                     |                             |                           |                 |                        |                     |         |
| 30a       | L1        | 20                         | 0.0              | 0.017               | 3.6                     | LOS A               | 0.1                         | 0.6                       | 0.27            | 0.42                   | 0.27                | 40.6    |
| 32a       | R1        | 1                          | 0.0              | 0.017               | 7.9                     | LOS A               | 0.1                         | 0.6                       | 0.27            | 0.42                   | 0.27                | 39.2    |
| 32b       | R3        | 1                          | 0.0              | 0.017               | 10.1                    | LOS A               | 0.1                         | 0.6                       | 0.27            | 0.42                   | 0.27                | 37.2    |
| Appro     | ach       | 22                         | 0.0              | 0.017               | 4.1                     | LOS A               | 0.1                         | 0.6                       | 0.27            | 0.42                   | 0.27                | 40.4    |
| All Ve    | hicles    | 257                        | 0.0              | 0.074               | 4.1                     | LOS A               | 0.4                         | 2.8                       | 0.10            | 0.40                   | 0.10                | 41.4    |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:56 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8
# ₩ Site: 101 [21698\_2041\_AAST\_AM]

Node: 21698 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:46:06 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21698\_2041\_AAST\_AM]

Node: 21698 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | ce - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | South    | veh/h<br>Collector Ro | %        | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/r |
| 1a     | L1       | 4                     | 0.0      | 0.077  | 3.6     | LOS A    | 0.4      | 3.0      | 0.21   | 0.43      | 0.21      | 38.9 |
| 2      | T1       | -<br>86               | 0.0      | 0.077  | 4.0     | LOSA     | 0.4      | 3.0      | 0.21   | 0.43      | 0.21      | 46.3 |
| -      |          |                       |          |        |         |          |          |          |        |           |           |      |
| 3b     | R3       | 15                    | 0.0      | 0.077  | 10.3    | LOS A    | 0.4      | 3.0      | 0.21   | 0.43      | 0.21      | 36.2 |
| Appro  | ach      | 105                   | 0.0      | 0.077  | 4.8     | LOS A    | 0.4      | 3.0      | 0.21   | 0.43      | 0.21      | 44.5 |
| South  | East: So | outh East Ro          | ad       |        |         |          |          |          |        |           |           |      |
| 21b    | L3       | 14                    | 0.0      | 0.057  | 3.5     | LOS A    | 0.3      | 2.1      | 0.29   | 0.56      | 0.29      | 34.7 |
| 22     | T1       | 7                     | 0.0      | 0.057  | 3.7     | LOS A    | 0.3      | 2.1      | 0.29   | 0.56      | 0.29      | 36.3 |
| 23a    | R1       | 52                    | 0.0      | 0.057  | 7.5     | LOS A    | 0.3      | 2.1      | 0.29   | 0.56      | 0.29      | 36.2 |
| Appro  | ach      | 73                    | 0.0      | 0.057  | 6.3     | LOS A    | 0.3      | 2.1      | 0.29   | 0.56      | 0.29      | 35.9 |
| ••     |          |                       |          |        |         |          |          |          |        |           |           |      |
|        |          | Collector Roa         |          |        |         |          |          |          |        |           |           |      |
| 7a     | L1       | 160                   | 0.0      | 0.184  | 3.6     | LOS A    | 1.1      | 7.9      | 0.17   | 0.38      | 0.17      | 41.9 |
| 8      | T1       | 116                   | 0.0      | 0.184  | 4.0     | LOS A    | 1.1      | 7.9      | 0.17   | 0.38      | 0.17      | 43.4 |
| 9b     | R3       | 1                     | 0.0      | 0.184  | 10.2    | LOS A    | 1.1      | 7.9      | 0.17   | 0.38      | 0.17      | 41.0 |
| Appro  | ach      | 277                   | 0.0      | 0.184  | 3.8     | LOS A    | 1.1      | 7.9      | 0.17   | 0.38      | 0.17      | 42.5 |
| North  | West: N  | orth West Ro          | oad      |        |         |          |          |          |        |           |           |      |
| 27b    | L3       | 1                     | 0.0      | 0.020  | 4.6     | LOS A    | 0.1      | 0.7      | 0.32   | 0.45      | 0.32      | 40.0 |
| 28     | T1       | 19                    | 0.0      | 0.020  | 4.4     | LOS A    | 0.1      | 0.7      | 0.32   | 0.45      | 0.32      | 37.1 |
| 29a    | R1       | 5                     | 0.0      | 0.020  | 8.5     | LOS A    | 0.1      | 0.7      | 0.32   | 0.45      | 0.32      | 36.7 |
| Appro  | ach      | 25                    | 0.0      | 0.020  | 5.3     | LOS A    | 0.1      | 0.7      | 0.32   | 0.45      | 0.32      | 37.1 |
| All Ve | hicles   | 480                   | 0.0      | 0.184  | 4.5     | LOS A    | 1.1      | 7.9      | 0.21   | 0.42      | 0.21      | 41.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:52 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21698\_2041\_AAST\_PM]

Node: 21698 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | ce - Vel | hicles |         |          |          |          |        |           |           |       |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|-------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |       |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    | Speed |
| South  | South    | veh/h<br>Collector Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h  |
| 1a     | L1       | 5                     | 0.0      | 0.105  | 4.0     | LOS A    | 0.6      | 4.2      | 0.32   | 0.45      | 0.32      | 38.0  |
|        | T1       | 5<br>112              |          |        |         | LOSA     |          | 4.2      |        |           |           |       |
| 2      |          |                       | 0.0      | 0.105  | 4.3     |          | 0.6      |          | 0.32   | 0.45      | 0.32      | 45.1  |
| 3b     | R3       | 16                    | 0.0      | 0.105  | 10.7    | LOS A    | 0.6      | 4.2      | 0.32   | 0.45      | 0.32      | 35.3  |
| Appro  | ach      | 133                   | 0.0      | 0.105  | 5.1     | LOS A    | 0.6      | 4.2      | 0.32   | 0.45      | 0.32      | 43.6  |
| South  | East: So | outh East Ro          | ad       |        |         |          |          |          |        |           |           |       |
| 21b    | L3       | 13                    | 0.0      | 0.106  | 3.5     | LOS A    | 0.6      | 4.1      | 0.28   | 0.57      | 0.28      | 34.4  |
| 22     | T1       | 15                    | 0.0      | 0.106  | 3.6     | LOS A    | 0.6      | 4.1      | 0.28   | 0.57      | 0.28      | 36.0  |
| 23a    | R1       | 111                   | 0.0      | 0.106  | 7.4     | LOS A    | 0.6      | 4.1      | 0.28   | 0.57      | 0.28      | 35.9  |
| Appro  | ach      | 138                   | 0.0      | 0.106  | 6.6     | LOS A    | 0.6      | 4.1      | 0.28   | 0.57      | 0.28      | 35.7  |
| North: | North C  | Collector Roa         | ad       |        |         |          |          |          |        |           |           |       |
| 7a     | L1       | 74                    | 0.0      | 0.116  | 3.6     | LOS A    | 0.7      | 4.7      | 0.14   | 0.37      | 0.14      | 42.2  |
| 8      | T1       | 100                   | 0.0      | 0.116  | 3.9     | LOS A    | 0.7      | 4.7      | 0.14   | 0.37      | 0.14      | 43.7  |
| 9b     | R3       | 1                     | 0.0      | 0.116  | 10.1    | LOS A    | 0.7      | 4.7      | 0.14   | 0.37      | 0.14      | 41.3  |
| Appro  | ach      | 175                   | 0.0      | 0.116  | 3.8     | LOS A    | 0.7      | 4.7      | 0.14   | 0.37      | 0.14      | 43.1  |
| North  | West: N  | orth West Ro          | bad      |        |         |          |          |          |        |           |           |       |
| 27b    | L3       | 1                     | 0.0      | 0.013  | 4.9     | LOS A    | 0.1      | 0.5      | 0.40   | 0.48      | 0.40      | 38.9  |
| 28     | T1       | 9                     | 0.0      | 0.013  | 4.8     | LOS A    | 0.1      | 0.5      | 0.40   | 0.48      | 0.40      | 35.9  |
| 29a    | R1       | 4                     | 0.0      | 0.013  | 8.9     | LOS A    | 0.1      | 0.5      | 0.40   | 0.48      | 0.40      | 35.6  |
| Appro  | ach      | 15                    | 0.0      | 0.013  | 6.0     | LOS A    | 0.1      | 0.5      | 0.40   | 0.48      | 0.40      | 36.0  |
| All Ve | hicles   | 460                   | 0.0      | 0.116  | 5.1     | LOS A    | 0.7      | 4.7      | 0.24   | 0.46      | 0.24      | 40.6  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:52 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21699\_2041\_AAST\_AM]

Node: 21699 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:43:39 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21699\_2041\_AAST\_AM]

Node: 21699 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | Performanc    | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|---------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F      |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total         | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : South I | veh/h<br>Road | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2        | 5             | 0.0     | 0.087  | 3.6     | LOS A    | 0.5      | 3.6      | 0.12   | 0.50      | 0.12      | 36.5 |
| 2      | T1        | 72            | 0.0     | 0.087  | 3.7     | LOSA     | 0.5      | 3.6      | 0.12   | 0.50      | 0.12      | 30.5 |
| _      |           |               |         |        |         |          |          |          |        |           |           |      |
| 3      | R2        | 54            | 0.0     | 0.087  | 8.9     | LOSA     | 0.5      | 3.6      | 0.12   | 0.50      | 0.12      | 33.6 |
| Appro  | bach      | 131           | 0.0     | 0.087  | 5.9     | LOS A    | 0.5      | 3.6      | 0.12   | 0.50      | 0.12      | 36.0 |
| East:  | East Co   | llector Road  |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 68            | 0.0     | 0.076  | 2.8     | LOS A    | 0.4      | 3.0      | 0.37   | 0.47      | 0.37      | 38.8 |
| 5      | T1        | 18            | 0.0     | 0.076  | 3.3     | LOS A    | 0.4      | 3.0      | 0.37   | 0.47      | 0.37      | 37.7 |
| 6      | R2        | 5             | 0.0     | 0.076  | 7.8     | LOS A    | 0.4      | 3.0      | 0.37   | 0.47      | 0.37      | 35.1 |
| Appro  | bach      | 92            | 0.0     | 0.076  | 3.2     | LOS A    | 0.4      | 3.0      | 0.37   | 0.47      | 0.37      | 38.4 |
|        |           |               |         |        |         |          |          |          |        |           |           |      |
|        | : North F |               |         | 0.405  |         | 100.4    |          |          |        | o 40      |           |      |
| 7      | L2        | 8             | 0.0     | 0.135  | 3.5     | LOS A    | 0.8      | 5.3      | 0.26   | 0.40      | 0.26      | 36.0 |
| 8      | T1        | 172           | 0.0     | 0.135  | 3.7     | LOS A    | 0.8      | 5.3      | 0.26   | 0.40      | 0.26      | 40.8 |
| 9      | R2        | 1             | 0.0     | 0.135  | 8.7     | LOS A    | 0.8      | 5.3      | 0.26   | 0.40      | 0.26      | 36.5 |
| Appro  | bach      | 181           | 0.0     | 0.135  | 3.7     | LOS A    | 0.8      | 5.3      | 0.26   | 0.40      | 0.26      | 40.6 |
| West:  | West C    | ollector Road | ł       |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 1             | 0.0     | 0.029  | 3.4     | LOS A    | 0.2      | 1.1      | 0.29   | 0.48      | 0.29      | 36.0 |
| 11     | T1        | 24            | 0.0     | 0.029  | 3.7     | LOS A    | 0.2      | 1.1      | 0.29   | 0.48      | 0.29      | 34.0 |
| 12     | R2        | 12            | 0.0     | 0.029  | 8.6     | LOS A    | 0.2      | 1.1      | 0.29   | 0.48      | 0.29      | 35.8 |
| Appro  | bach      | 37            | 0.0     | 0.029  | 5.2     | LOS A    | 0.2      | 1.1      | 0.29   | 0.48      | 0.29      | 34.7 |
| All Ve | hicles    | 440           | 0.0     | 0.135  | 4.4     | LOS A    | 0.8      | 5.3      | 0.25   | 0.45      | 0.25      | 38.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:11:43 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21699\_2041\_AAST\_PM]

Node: 21699 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | erformanc     | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|---------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F      |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total         | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : South I | veh/h<br>Road | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2        | 6             | 0.0     | 0.137  | 3.7     | LOS A    | 0.8      | 5.8      | 0.16   | 0.47      | 0.16      | 36.8 |
| 2      | T1        | 132           | 0.0     | 0.137  | 3.8     | LOSA     | 0.8      | 5.8      | 0.16   | 0.47      | 0.16      | 38.1 |
| 3      | R2        | 66            | 0.0     | 0.137  | 9.0     | LOSA     | 0.8      | 5.8      | 0.16   | 0.47      | 0.16      | 33.9 |
| Appro  |           | 204           | 0.0     | 0.137  | 5.5     | LOSA     | 0.8      | 5.8      | 0.16   | 0.47      | 0.16      | 36.8 |
|        |           |               | 0.0     | 0.157  | 5.5     | LUGA     | 0.0      | 5.0      | 0.10   | 0.47      | 0.10      | 30.0 |
| East:  | East Co   | llector Road  |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 67            | 0.0     | 0.080  | 2.4     | LOS A    | 0.4      | 3.1      | 0.27   | 0.43      | 0.27      | 39.5 |
| 5      | T1        | 28            | 0.0     | 0.080  | 2.9     | LOS A    | 0.4      | 3.1      | 0.27   | 0.43      | 0.27      | 38.5 |
| 6      | R2        | 7             | 0.0     | 0.080  | 7.3     | LOS A    | 0.4      | 3.1      | 0.27   | 0.43      | 0.27      | 35.8 |
| Appro  | bach      | 103           | 0.0     | 0.080  | 2.9     | LOS A    | 0.4      | 3.1      | 0.27   | 0.43      | 0.27      | 39.0 |
| North  | : North F | Road          |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 7             | 0.0     | 0.078  | 3.5     | LOS A    | 0.4      | 2.9      | 0.26   | 0.39      | 0.26      | 36.0 |
| 8      | T1        | 94            | 0.0     | 0.078  | 3.7     | LOS A    | 0.4      | 2.9      | 0.26   | 0.39      | 0.26      | 40.8 |
| 9      | R2        | 1             | 0.0     | 0.078  | 8.7     | LOS A    | 0.4      | 2.9      | 0.26   | 0.39      | 0.26      | 36.5 |
| Appro  | bach      | 102           | 0.0     | 0.078  | 3.8     | LOS A    | 0.4      | 2.9      | 0.26   | 0.39      | 0.26      | 40.5 |
| West:  | West C    | ollector Road | d       |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 1             | 0.0     | 0.023  | 3.8     | LOS A    | 0.1      | 0.8      | 0.37   | 0.46      | 0.37      | 36.2 |
| 11     | T1        | 22            | 0.0     | 0.023  | 4.1     | LOS A    | 0.1      | 0.8      | 0.37   | 0.46      | 0.37      | 34.2 |
| 12     | R2        | 4             | 0.0     | 0.023  | 9.0     | LOS A    | 0.1      | 0.8      | 0.37   | 0.46      | 0.37      | 36.0 |
| Appro  | bach      | 27            | 0.0     | 0.023  | 4.8     | LOS A    | 0.1      | 0.8      | 0.37   | 0.46      | 0.37      | 34.6 |
| All Ve | hicles    | 437           | 0.0     | 0.137  | 4.4     | LOS A    | 0.8      | 5.8      | 0.22   | 0.44      | 0.22      | 37.9 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:11:43 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21717\_2041\_AAST\_AM]

Node: 21717 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:44:49 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21717\_2041\_AAST\_AM]

Node: 21717 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ement F | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | lows=<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | : South | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 1         | L2      | 1                          | 0.0              | 0.110               | 4.5                     | LOS A               | 0.6                         | 4.2                       | 0.34            | 0.43                   | 0.34                | 27.7                     |
| 2         | T1      | 135                        | 0.0              | 0.110               | 4.6                     | LOS A               | 0.6                         | 4.2                       | 0.34            | 0.43                   | 0.34                | 53.7                     |
| Appro     | ach     | 136                        | 0.0              | 0.110               | 4.6                     | LOS A               | 0.6                         | 4.2                       | 0.34            | 0.43                   | 0.34                | 53.5                     |
| North:    | URAA    | ccess                      |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 8         | T1      | 149                        | 0.0              | 0.174               | 3.8                     | LOS A               | 1.1                         | 7.9                       | 0.02            | 0.55                   | 0.02                | 53.0                     |
| 9         | R2      | 157                        | 0.0              | 0.174               | 8.9                     | LOS A               | 1.1                         | 7.9                       | 0.02            | 0.55                   | 0.02                | 37.7                     |
| Appro     | ach     | 306                        | 0.0              | 0.174               | 6.4                     | LOS A               | 1.1                         | 7.9                       | 0.02            | 0.55                   | 0.02                | 45.2                     |
| West:     | West C  | ollector Road              | d                |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 10        | L2      | 238                        | 0.0              | 0.187               | 3.1                     | LOS A               | 1.2                         | 8.2                       | 0.36            | 0.47                   | 0.36                | 52.1                     |
| 12        | R2      | 1                          | 0.0              | 0.187               | 8.2                     | LOS A               | 1.2                         | 8.2                       | 0.36            | 0.47                   | 0.36                | 53.8                     |
| Appro     | ach     | 239                        | 0.0              | 0.187               | 3.2                     | LOS A               | 1.2                         | 8.2                       | 0.36            | 0.47                   | 0.36                | 52.1                     |
| All Ve    | hicles  | 681                        | 0.0              | 0.187               | 4.9                     | LOS A               | 1.2                         | 8.2                       | 0.20            | 0.50                   | 0.20                | 48.9                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:50:58 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## **V** Site: 101 [21717\_2041\_AAST\_PM]

Node: 21717 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move              | ment F  | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |      |
|-------------------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|------|
| Mov<br>ID         | Turn    | Demand F<br>Total<br>veh/h | lows=<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |
| South             | : South | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 1                 | L2      | 1                          | 0.0              | 0.138               | 5.2                     | LOS A               | 0.8                         | 5.4                       | 0.46            | 0.51                   | 0.46                | 27.2 |
| 2                 | T1      | 153                        | 0.0              | 0.138               | 5.4                     | LOS A               | 0.8                         | 5.4                       | 0.46            | 0.51                   | 0.46                | 52.8 |
| Appro             | ach     | 154                        | 0.0              | 0.138               | 5.4                     | LOS A               | 0.8                         | 5.4                       | 0.46            | 0.51                   | 0.46                | 52.6 |
| North: URA Access |         |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 8                 | T1      | 158                        | 0.0              | 0.251               | 3.8                     | LOS A               | 1.8                         | 12.5                      | 0.02            | 0.58                   | 0.02                | 52.3 |
| 9                 | R2      | 284                        | 0.0              | 0.251               | 8.9                     | LOS A               | 1.8                         | 12.5                      | 0.02            | 0.58                   | 0.02                | 37.3 |
| Appro             | ach     | 442                        | 0.0              | 0.251               | 7.1                     | LOS A               | 1.8                         | 12.5                      | 0.02            | 0.58                   | 0.02                | 42.7 |
| West:             | West C  | ollector Road              | d                |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 10                | L2      | 201                        | 0.0              | 0.163               | 3.2                     | LOS A               | 1.0                         | 7.2                       | 0.38            | 0.48                   | 0.38                | 52.0 |
| 12                | R2      | 1                          | 0.0              | 0.163               | 8.3                     | LOS A               | 1.0                         | 7.2                       | 0.38            | 0.48                   | 0.38                | 53.6 |
| Appro             | ach     | 202                        | 0.0              | 0.163               | 3.3                     | LOS A               | 1.0                         | 7.2                       | 0.38            | 0.48                   | 0.38                | 52.0 |
| All Vel           | hicles  | 798                        | 0.0              | 0.251               | 5.8                     | LOS A               | 1.8                         | 12.5                      | 0.20            | 0.54                   | 0.20                | 46.4 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:50:58 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21718\_2041\_AAST\_AM]

Node: 21718 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:44:31 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21718\_2041\_AAST\_AM]

Node: 21718 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ment F  | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |      |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |
| South     | : South | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 1         | L2      | 3                          | 0.0              | 0.012               | 3.9                     | LOS A               | 0.1                         | 0.4                       | 0.29            | 0.57                   | 0.29                | 36.1 |
| 3         | R2      | 12                         | 0.0              | 0.012               | 9.2                     | LOS A               | 0.1                         | 0.4                       | 0.29            | 0.57                   | 0.29                | 32.4 |
| Appro     | ach     | 15                         | 0.0              | 0.012               | 8.1                     | LOS A               | 0.1                         | 0.4                       | 0.29            | 0.57                   | 0.29                | 33.2 |
| East:     | East Co | llector Road               |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 4         | L2      | 9                          | 0.0              | 0.087               | 3.2                     | LOS A               | 0.5                         | 3.3                       | 0.03            | 0.37                   | 0.03                | 42.2 |
| 5         | T1      | 138                        | 0.0              | 0.087               | 3.4                     | LOS A               | 0.5                         | 3.3                       | 0.03            | 0.37                   | 0.03                | 44.4 |
| Appro     | ach     | 147                        | 0.0              | 0.087               | 3.4                     | LOS A               | 0.5                         | 3.3                       | 0.03            | 0.37                   | 0.03                | 44.3 |
| West:     | West C  | ollector Road              | b                |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 11        | T1      | 202                        | 0.0              | 0.127               | 3.9                     | LOS A               | 0.8                         | 5.4                       | 0.08            | 0.37                   | 0.08                | 42.3 |
| 12        | R2      | 3                          | 0.0              | 0.127               | 8.9                     | LOS A               | 0.8                         | 5.4                       | 0.08            | 0.37                   | 0.08                | 40.0 |
| Appro     | ach     | 205                        | 0.0              | 0.127               | 3.9                     | LOS A               | 0.8                         | 5.4                       | 0.08            | 0.37                   | 0.08                | 42.3 |
| All Vel   | hicles  | 367                        | 0.0              | 0.127               | 3.9                     | LOS A               | 0.8                         | 5.4                       | 0.07            | 0.38                   | 0.07                | 42.6 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:33:13 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21718\_2041\_AAST\_PM]

Node: 21718 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ment F  | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | lows=<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | : South | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 1         | L2      | 3                          | 0.0              | 0.010               | 4.4                     | LOS A               | 0.1                         | 0.4                       | 0.39            | 0.57                   | 0.39                | 35.9                     |
| 3         | R2      | 8                          | 0.0              | 0.010               | 9.7                     | LOS A               | 0.1                         | 0.4                       | 0.39            | 0.57                   | 0.39                | 32.2                     |
| Appro     | ach     | 12                         | 0.0              | 0.010               | 8.3                     | LOS A               | 0.1                         | 0.4                       | 0.39            | 0.57                   | 0.39                | 33.2                     |
| East:     | East Ro | ad                         |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2      | 20                         | 0.0              | 0.150               | 3.2                     | LOS A               | 0.9                         | 6.0                       | 0.03            | 0.37                   | 0.03                | 42.2                     |
| 5         | T1      | 239                        | 0.0              | 0.150               | 3.4                     | LOS A               | 0.9                         | 6.0                       | 0.03            | 0.37                   | 0.03                | 44.4                     |
| Appro     | ach     | 259                        | 0.0              | 0.150               | 3.4                     | LOS A               | 0.9                         | 6.0                       | 0.03            | 0.37                   | 0.03                | 44.2                     |
| West:     | West R  | oad                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 11        | T1      | 180                        | 0.0              | 0.112               | 3.8                     | LOS A               | 0.7                         | 4.8                       | 0.07            | 0.37                   | 0.07                | 42.5                     |
| 12        | R2      | 3                          | 0.0              | 0.112               | 8.9                     | LOS A               | 0.7                         | 4.8                       | 0.07            | 0.37                   | 0.07                | 40.1                     |
| Appro     | ach     | 183                        | 0.0              | 0.112               | 3.9                     | LOS A               | 0.7                         | 4.8                       | 0.07            | 0.37                   | 0.07                | 42.4                     |
| All Ve    | hicles  | 454                        | 0.0              | 0.150               | 3.7                     | LOS A               | 0.9                         | 6.0                       | 0.06            | 0.38                   | 0.06                | 43.1                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:33:13 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21723\_2041\_AAST\_AM]

Node: 21723 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:56:58 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21723\_2041\_AAST\_AM]

Node: 21723 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | Performanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: So | veh/h<br>outh East Ro | %<br>ad | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2       | 12                    | 0.0     | 0.019  | 4.1     | LOS A    | 0.1      | 0.7      | 0.03   | 0.52      | 0.03      | 46.5 |
| 2      | T1       | 12                    | 0.0     | 0.019  | 4.3     | LOSA     | 0.1      | 0.7      | 0.03   | 0.52      | 0.03      | 46.5 |
|        |          |                       |         |        |         |          |          |          |        |           |           |      |
| 3      | R2       | 6                     | 0.0     | 0.019  | 8.4     | LOS A    | 0.1      | 0.7      | 0.03   | 0.52      | 0.03      | 46.4 |
| Appro  | bach     | 29                    | 0.0     | 0.019  | 5.1     | LOS A    | 0.1      | 0.7      | 0.03   | 0.52      | 0.03      | 46.5 |
| North  | East: No | orth East Roa         | ad      |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 13                    | 0.0     | 0.011  | 4.3     | LOS A    | 0.1      | 0.4      | 0.17   | 0.48      | 0.17      | 48.2 |
| 5      | T1       | 1                     | 0.0     | 0.011  | 4.5     | LOS A    | 0.1      | 0.4      | 0.17   | 0.48      | 0.17      | 24.7 |
| 6      | R2       | 1                     | 0.0     | 0.011  | 8.7     | LOS A    | 0.1      | 0.4      | 0.17   | 0.48      | 0.17      | 22.2 |
| Appro  | bach     | 15                    | 0.0     | 0.011  | 4.6     | LOS A    | 0.1      | 0.4      | 0.17   | 0.48      | 0.17      | 44.7 |
| North  | West: No | orth West Ro          | bad     |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                     | 0.0     | 0.027  | 3.1     | LOS A    | 0.1      | 1.0      | 0.10   | 0.41      | 0.10      | 42.4 |
| 8      | T1       | 35                    | 0.0     | 0.027  | 3.4     | LOS A    | 0.1      | 1.0      | 0.10   | 0.41      | 0.10      | 51.8 |
| 9      | R2       | 1                     | 0.0     | 0.027  | 7.4     | LOS A    | 0.1      | 1.0      | 0.10   | 0.41      | 0.10      | 34.8 |
| Appro  | bach     | 37                    | 0.0     | 0.027  | 3.5     | LOS A    | 0.1      | 1.0      | 0.10   | 0.41      | 0.10      | 51.2 |
| South  | West: S  | outh West R           | oad     |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                     | 0.0     | 0.010  | 4.0     | LOS A    | 0.0      | 0.3      | 0.10   | 0.61      | 0.10      | 31.1 |
| 11     | T1       | 1                     | 0.0     | 0.010  | 4.2     | LOS A    | 0.0      | 0.3      | 0.10   | 0.61      | 0.10      | 39.0 |
| 12     | R2       | 11                    | 0.0     | 0.010  | 8.4     | LOS A    | 0.0      | 0.3      | 0.10   | 0.61      | 0.10      | 45.6 |
| Appro  | bach     | 13                    | 0.0     | 0.010  | 7.7     | LOS A    | 0.0      | 0.3      | 0.10   | 0.61      | 0.10      | 44.3 |
| All Ve | hicles   | 94                    | 0.0     | 0.027  | 4.8     | LOS A    | 0.1      | 1.0      | 0.09   | 0.48      | 0.09      | 47.5 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:51:24 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21723\_2041\_AAST\_PM]

Node: 21723 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | Performanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand F              |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Sc | veh/h<br>outh East Ro | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | Last. 00 | 16                    | 0.0     | 0.031  | 4.1     | LOS A    | 0.2      | 1.1      | 0.03   | 0.51      | 0.03      | 46.6 |
| 2      | T1       | 23                    |         | 0.031  |         | LOSA     |          | 1.1      |        |           |           | 46.6 |
| _      |          |                       | 0.0     |        | 4.3     |          | 0.2      |          | 0.03   | 0.51      | 0.03      |      |
| 3      | R2       | 9                     | 0.0     | 0.031  | 8.4     | LOS A    | 0.2      | 1.1      | 0.03   | 0.51      | 0.03      | 46.5 |
| Appro  | ach      | 48                    | 0.0     | 0.031  | 5.0     | LOS A    | 0.2      | 1.1      | 0.03   | 0.51      | 0.03      | 46.6 |
| North  | East: No | orth East Roa         | ad      |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 8                     | 0.0     | 0.008  | 4.1     | LOS A    | 0.0      | 0.3      | 0.10   | 0.49      | 0.10      | 48.4 |
| 5      | T1       | 1                     | 0.0     | 0.008  | 4.4     | LOS A    | 0.0      | 0.3      | 0.10   | 0.49      | 0.10      | 24.9 |
| 6      | R2       | 1                     | 0.0     | 0.008  | 8.5     | LOS A    | 0.0      | 0.3      | 0.10   | 0.49      | 0.10      | 22.4 |
| Appro  | ach      | 11                    | 0.0     | 0.008  | 4.6     | LOS A    | 0.0      | 0.3      | 0.10   | 0.49      | 0.10      | 43.5 |
| North  | West: No | orth West Ro          | bad     |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                     | 0.0     | 0.010  | 3.1     | LOS A    | 0.0      | 0.3      | 0.10   | 0.43      | 0.10      | 41.9 |
| 8      | T1       | 11                    | 0.0     | 0.010  | 3.4     | LOS A    | 0.0      | 0.3      | 0.10   | 0.43      | 0.10      | 51.4 |
| 9      | R2       | 1                     | 0.0     | 0.010  | 7.4     | LOS A    | 0.0      | 0.3      | 0.10   | 0.43      | 0.10      | 34.4 |
| Appro  | ach      | 13                    | 0.0     | 0.010  | 3.7     | LOS A    | 0.0      | 0.3      | 0.10   | 0.43      | 0.10      | 49.8 |
| South  | West: Se | outh West R           | oad     |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                     | 0.0     | 0.008  | 4.0     | LOS A    | 0.0      | 0.3      | 0.14   | 0.59      | 0.14      | 31.0 |
| 11     | T1       | 1                     | 0.0     | 0.008  | 4.3     | LOS A    | 0.0      | 0.3      | 0.14   | 0.59      | 0.14      | 38.9 |
| 12     | R2       | 8                     | 0.0     | 0.008  | 8.5     | LOS A    | 0.0      | 0.3      | 0.14   | 0.59      | 0.14      | 45.5 |
| Appro  | ach      | 11                    | 0.0     | 0.008  | 7.6     | LOS A    | 0.0      | 0.3      | 0.14   | 0.59      | 0.14      | 44.0 |
| All Ve | hicles   | 82                    | 0.0     | 0.031  | 5.1     | LOS A    | 0.2      | 1.1      | 0.07   | 0.50      | 0.07      | 46.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:51:25 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **V** Site: 101 [21724\_2041\_AAST\_AM]

Node: 21724 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:56:07 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21724\_2041\_AAST\_AM]

Node: 21724 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | erformanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand F             |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Dr | veh/h<br>oposed Aber | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        |          | •                    |         | 0.002  | 4.2     | LOS A    | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 36.1 |
| 1      |          | 1                    | 0.0     |        |         |          |          |          |        |           |           |      |
| 2      | T1       | 1                    | 0.0     | 0.002  | 4.4     | LOS A    | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 44.9 |
| 3      | R2       | 1                    | 0.0     | 0.002  | 8.6     | LOS A    | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 37.9 |
| Appro  | ach      | 3                    | 0.0     | 0.002  | 5.7     | LOS A    | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 39.6 |
| North  | East: No | rth East Roa         | ad      |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                    | 0.0     | 0.019  | 3.9     | LOS A    | 0.1      | 0.7      | 0.03   | 0.44      | 0.03      | 43.5 |
| 5      | T1       | 26                   | 0.0     | 0.019  | 4.1     | LOS A    | 0.1      | 0.7      | 0.03   | 0.44      | 0.03      | 39.8 |
| 6      | R2       | 1                    | 0.0     | 0.019  | 8.4     | LOS A    | 0.1      | 0.7      | 0.03   | 0.44      | 0.03      | 46.3 |
| Appro  | ach      | 28                   | 0.0     | 0.019  | 4.2     | LOS A    | 0.1      | 0.7      | 0.03   | 0.44      | 0.03      | 40.2 |
| North  | West: Pr | oposed Abe           | rnethys | Lane   |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                    | 0.0     | 0.002  | 4.1     | LOS A    | 0.0      | 0.1      | 0.10   | 0.52      | 0.10      | 36.6 |
| 8      | T1       | 1                    | 0.0     | 0.002  | 4.4     | LOS A    | 0.0      | 0.1      | 0.10   | 0.52      | 0.10      | 45.1 |
| 9      | R2       | 1                    | 0.0     | 0.002  | 8.5     | LOS A    | 0.0      | 0.1      | 0.10   | 0.52      | 0.10      | 35.8 |
| Appro  | ach      | 3                    | 0.0     | 0.002  | 5.7     | LOS A    | 0.0      | 0.1      | 0.10   | 0.52      | 0.10      | 39.1 |
| South  | West: Se | outh West R          | oad     |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                    | 0.0     | 0.013  | 3.9     | LOS A    | 0.1      | 0.5      | 0.03   | 0.44      | 0.03      | 43.5 |
| 11     | T1       | 17                   | 0.0     | 0.013  | 4.1     | LOS A    | 0.1      | 0.5      | 0.03   | 0.44      | 0.03      | 40.0 |
| 12     | R2       | 1                    | 0.0     | 0.013  | 8.4     | LOS A    | 0.1      | 0.5      | 0.03   | 0.44      | 0.03      | 46.0 |
| Appro  | ach      | 19                   | 0.0     | 0.013  | 4.3     | LOS A    | 0.1      | 0.5      | 0.03   | 0.44      | 0.03      | 40.5 |
| All Ve | hicles   | 54                   | 0.0     | 0.019  | 4.5     | LOS A    | 0.1      | 0.7      | 0.04   | 0.45      | 0.04      | 40.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:48:28 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21724\_2041\_AAST\_PM]

Node: 21724 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P  | erformanc            | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|----------|----------------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand F             |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: Dr | veh/h<br>oposed Aber | %       | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
|        | L2       | •                    |         | 0.002  | 4.2     | LOS A    | 0.0      | 0.1      | 0.11   | 0.52      | 0.11      | 36.2 |
| 1      |          | 1                    | 0.0     |        |         |          |          |          |        |           |           |      |
| 2      | T1       | 1                    | 0.0     | 0.002  | 4.4     | LOS A    | 0.0      | 0.1      | 0.11   | 0.52      | 0.11      | 45.0 |
| 3      | R2       | 1                    | 0.0     | 0.002  | 8.5     | LOS A    | 0.0      | 0.1      | 0.11   | 0.52      | 0.11      | 37.9 |
| Appro  | ach      | 3                    | 0.0     | 0.002  | 5.7     | LOS A    | 0.0      | 0.1      | 0.11   | 0.52      | 0.11      | 39.7 |
| North  | East: No | rth East Roa         | ad      |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 1                    | 0.0     | 0.016  | 3.9     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 43.4 |
| 5      | T1       | 22                   | 0.0     | 0.016  | 4.1     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 39.8 |
| 6      | R2       | 1                    | 0.0     | 0.016  | 8.4     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 46.2 |
| Appro  | ach      | 24                   | 0.0     | 0.016  | 4.3     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 40.2 |
| North  | West: Pr | oposed Abe           | rnethys | Lane   |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                    | 0.0     | 0.002  | 4.2     | LOS A    | 0.0      | 0.1      | 0.12   | 0.52      | 0.12      | 36.5 |
| 8      | T1       | 1                    | 0.0     | 0.002  | 4.4     | LOS A    | 0.0      | 0.1      | 0.12   | 0.52      | 0.12      | 45.0 |
| 9      | R2       | 1                    | 0.0     | 0.002  | 8.6     | LOS A    | 0.0      | 0.1      | 0.12   | 0.52      | 0.12      | 35.7 |
| Appro  | ach      | 3                    | 0.0     | 0.002  | 5.7     | LOS A    | 0.0      | 0.1      | 0.12   | 0.52      | 0.12      | 38.9 |
| South  | West: Se | outh West R          | oad     |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 1                    | 0.0     | 0.017  | 3.9     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 43.6 |
| 11     | T1       | 24                   | 0.0     | 0.017  | 4.1     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 40.1 |
| 12     | R2       | 1                    | 0.0     | 0.017  | 8.4     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 46.1 |
| Appro  | ach      | 26                   | 0.0     | 0.017  | 4.3     | LOS A    | 0.1      | 0.6      | 0.03   | 0.44      | 0.03      | 40.5 |
| All Ve | hicles   | 57                   | 0.0     | 0.017  | 4.4     | LOS A    | 0.1      | 0.6      | 0.04   | 0.45      | 0.04      | 40.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 10:48:28 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

#### **Site: 101 [21744\_2041\_AAST\_AM]**

Node: 21744 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:42:57 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21744\_2041\_AAST\_AM]

Node: 21744 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | Performanc     | e - Vel | hicles      |              |          |                 |               |        |           |           |               |
|--------|-----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn      | Demand I       |         | Deg.        | Average      | Level of | 95% Back        |               | Prop.  |           | Aver. No. |               |
| ID     |           | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : South I |                | 70      | V/0         |              |          |                 |               |        |           |           | NIT // T      |
| 1      | L2        | 1              | 0.0     | 0.002       | 4.0          | LOS A    | 0.0             | 0.1           | 0.10   | 0.52      | 0.10      | 37.0          |
| 2      | T1        | 1              | 0.0     | 0.002       | 4.2          | LOS A    | 0.0             | 0.1           | 0.10   | 0.52      | 0.10      | 37.3          |
| 3      | R2        | 1              | 0.0     | 0.002       | 8.5          | LOS A    | 0.0             | 0.1           | 0.10   | 0.52      | 0.10      | 34.6          |
| Appro  | bach      | 3              | 0.0     | 0.002       | 5.6          | LOS A    | 0.0             | 0.1           | 0.10   | 0.52      | 0.10      | 36.3          |
| East:  | East Roa  | ad             |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2        | 1              | 0.0     | 0.013       | 3.4          | LOS A    | 0.1             | 0.5           | 0.03   | 0.44      | 0.03      | 39.4          |
| 5      | T1        | 18             | 0.0     | 0.013       | 3.7          | LOS A    | 0.1             | 0.5           | 0.03   | 0.44      | 0.03      | 40.8          |
| 6      | R2        | 1              | 0.0     | 0.013       | 7.8          | LOS A    | 0.1             | 0.5           | 0.03   | 0.44      | 0.03      | 37.8          |
| Appro  | bach      | 20             | 0.0     | 0.013       | 3.9          | LOS A    | 0.1             | 0.5           | 0.03   | 0.44      | 0.03      | 40.6          |
| North  | : North F | Road           |         |             |              |          |                 |               |        |           |           |               |
| 7      | L2        | 3              | 0.0     | 0.004       | 3.9          | LOS A    | 0.0             | 0.1           | 0.12   | 0.50      | 0.12      | 36.3          |
| 8      | T1        | 1              | 0.0     | 0.004       | 4.2          | LOS A    | 0.0             | 0.1           | 0.12   | 0.50      | 0.12      | 38.3          |
| 9      | R2        | 1              | 0.0     | 0.004       | 8.4          | LOS A    | 0.0             | 0.1           | 0.12   | 0.50      | 0.12      | 36.4          |
| Appro  | bach      | 5              | 0.0     | 0.004       | 4.9          | LOS A    | 0.0             | 0.1           | 0.12   | 0.50      | 0.12      | 36.7          |
| West:  | West R    | oad            |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2        | 1              | 0.0     | 0.018       | 4.0          | LOS A    | 0.1             | 0.6           | 0.03   | 0.44      | 0.03      | 39.4          |
| 11     | T1        | 25             | 0.0     | 0.018       | 4.2          | LOS A    | 0.1             | 0.6           | 0.03   | 0.44      | 0.03      | 39.6          |
| 12     | R2        | 1              | 0.0     | 0.018       | 8.4          | LOS A    | 0.1             | 0.6           | 0.03   | 0.44      | 0.03      | 38.3          |
| Appro  | bach      | 27             | 0.0     | 0.018       | 4.4          | LOS A    | 0.1             | 0.6           | 0.03   | 0.44      | 0.03      | 39.5          |
| All Ve | hicles    | 56             | 0.0     | 0.018       | 4.3          | LOS A    | 0.1             | 0.6           | 0.04   | 0.45      | 0.04      | 39.4          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Friday, 12 June 2020 3:39:39 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21744\_2041\_AAST\_PM]

Node: 21744 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P   | erformanc     | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------|---------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn      | Demand F      |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |           | Total         | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : South I | veh/h<br>Road | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/l |
| 1      | L2        | 1             | 0.0     | 0.002  | 4.0     | LOS A    | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 36.  |
| 2      | <br>T1    | 1             | 0.0     | 0.002  | 4.2     | LOSA     | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 37.  |
| 3      | R2        | 1             | 0.0     | 0.002  | 8.5     | LOSA     | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 34.  |
| Appro  |           | 3             | 0.0     | 0.002  | 5.6     | LOSA     | 0.0      | 0.1      | 0.12   | 0.51      | 0.12      | 36.  |
| ••     |           |               | 0.0     | 0.002  | 0.0     | LOOA     | 0.0      | 0.1      | 0.12   | 0.01      | 0.12      | 00.  |
| East:  | East Roa  | ad            |         |        |         |          |          |          |        |           |           |      |
| 4      | L2        | 1             | 0.0     | 0.018  | 3.4     | LOS A    | 0.1      | 0.6      | 0.03   | 0.43      | 0.03      | 39.  |
| 5      | T1        | 25            | 0.0     | 0.018  | 3.7     | LOS A    | 0.1      | 0.6      | 0.03   | 0.43      | 0.03      | 40.  |
| 6      | R2        | 1             | 0.0     | 0.018  | 7.8     | LOS A    | 0.1      | 0.6      | 0.03   | 0.43      | 0.03      | 37.  |
| Appro  | ach       | 27            | 0.0     | 0.018  | 3.9     | LOS A    | 0.1      | 0.6      | 0.03   | 0.43      | 0.03      | 40.  |
| North  | North R   | load          |         |        |         |          |          |          |        |           |           |      |
| 7      | L2        | 2             | 0.0     | 0.003  | 3.9     | LOS A    | 0.0      | 0.1      | 0.10   | 0.51      | 0.10      | 36.  |
| 8      | T1        | 1             | 0.0     | 0.003  | 4.1     | LOS A    | 0.0      | 0.1      | 0.10   | 0.51      | 0.10      | 38.  |
| 9      | R2        | 1             | 0.0     | 0.003  | 8.4     | LOS A    | 0.0      | 0.1      | 0.10   | 0.51      | 0.10      | 36.3 |
| Appro  | ach       | 4             | 0.0     | 0.003  | 5.1     | LOS A    | 0.0      | 0.1      | 0.10   | 0.51      | 0.10      | 36.  |
| West:  | West Ro   | bad           |         |        |         |          |          |          |        |           |           |      |
| 10     | L2        | 1             | 0.0     | 0.013  | 4.0     | LOS A    | 0.1      | 0.5      | 0.03   | 0.45      | 0.03      | 39.2 |
| 11     | T1        | 17            | 0.0     | 0.013  | 4.2     | LOS A    | 0.1      | 0.5      | 0.03   | 0.45      | 0.03      | 39.4 |
| 12     | R2        | 1             | 0.0     | 0.013  | 8.4     | LOS A    | 0.1      | 0.5      | 0.03   | 0.45      | 0.03      | 38.  |
| Appro  | ach       | 19            | 0.0     | 0.013  | 4.5     | LOS A    | 0.1      | 0.5      | 0.03   | 0.45      | 0.03      | 39.  |
| All Ve | hicles    | 54            | 0.0     | 0.018  | 4.3     | LOS A    | 0.1      | 0.6      | 0.04   | 0.45      | 0.04      | 39.  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:47 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21748\_2041\_AAST\_AM]

Node: 21748 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:55:35 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21748\_2041\_AAST\_AM]

Node: 21748 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   |            |       |     |       |       |         |          |          |        |           |        |      |  |  |
|--------|------------|-------|-----|-------|-------|---------|----------|----------|--------|-----------|--------|------|--|--|
| Mov    | Turn       |       |     |       |       |         |          |          |        |           |        |      |  |  |
| ID     |            | Total | HV  | Satn  | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles |      |  |  |
| South  | : Bells L  | veh/h | %   | v/c   | sec   |         | veh      | m        |        |           |        | km/r |  |  |
| 1      | L2         | 86    | 0.0 | 0.181 | 3.7   | LOS A   | 1.3      | 8.8      | 0.06   | 0.52      | 0.06   | 40.9 |  |  |
| 2      | T1         | 98    | 0.0 | 0.181 | 3.8   | LOSA    | 1.3      | 8.8      | 0.06   | 0.52      | 0.06   | 38.4 |  |  |
|        |            |       |     |       |       |         |          |          |        |           |        |      |  |  |
| 3      | R2         | 124   | 0.0 | 0.181 | 8.9   | LOS A   | 1.3      | 8.8      | 0.06   | 0.52      | 0.06   | 36.7 |  |  |
| Appro  | bach       | 308   | 0.0 | 0.181 | 5.8   | LOS A   | 1.3      | 8.8      | 0.06   | 0.52      | 0.06   | 38.4 |  |  |
| East:  | East Roa   | ad    |     |       |       |         |          |          |        |           |        |      |  |  |
| 4      | L2         | 177   | 0.0 | 0.200 | 6.5   | LOS A   | 1.3      | 8.8      | 0.66   | 0.69      | 0.66   | 37.1 |  |  |
| 5      | T1         | 1     | 0.0 | 0.200 | 6.7   | LOS A   | 1.3      | 8.8      | 0.66   | 0.69      | 0.66   | 36.6 |  |  |
| 6      | R2         | 3     | 0.0 | 0.200 | 11.8  | LOS A   | 1.3      | 8.8      | 0.66   | 0.69      | 0.66   | 32.2 |  |  |
| Appro  | bach       | 181   | 0.0 | 0.200 | 6.6   | LOS A   | 1.3      | 8.8      | 0.66   | 0.69      | 0.66   | 37.1 |  |  |
|        |            |       |     |       |       |         |          |          |        |           |        |      |  |  |
|        | : Bells La |       |     |       |       |         |          |          |        |           |        |      |  |  |
| 7      | L2         | 3     | 0.0 | 0.200 | 5.8   | LOS A   | 1.3      | 8.8      | 0.63   | 0.63      | 0.63   | 35.1 |  |  |
| 8      | T1         | 185   | 0.0 | 0.200 | 6.1   | LOS A   | 1.3      | 8.8      | 0.63   | 0.63      | 0.63   | 37.1 |  |  |
| 9      | R2         | 1     | 0.0 | 0.200 | 11.1  | LOS A   | 1.3      | 8.8      | 0.63   | 0.63      | 0.63   | 35.3 |  |  |
| Appro  | bach       | 189   | 0.0 | 0.200 | 6.1   | LOS A   | 1.3      | 8.8      | 0.63   | 0.63      | 0.63   | 37.0 |  |  |
| West   | West R     | oad   |     |       |       |         |          |          |        |           |        |      |  |  |
| 10     | L2         | 1     | 0.0 | 0.284 | 5.1   | LOS A   | 1.8      | 12.5     | 0.47   | 0.66      | 0.47   | 31.9 |  |  |
| 11     | T1         | 2     | 0.0 | 0.284 | 5.2   | LOS A   | 1.8      | 12.5     | 0.47   | 0.66      | 0.47   | 32.9 |  |  |
| 12     | R2         | 332   | 0.0 | 0.284 | 10.3  | LOS A   | 1.8      | 12.5     | 0.47   | 0.66      | 0.47   | 32.3 |  |  |
| Appro  | bach       | 335   | 0.0 | 0.284 | 10.3  | LOS A   | 1.8      | 12.5     | 0.47   | 0.66      | 0.47   | 32.3 |  |  |
| All Ve | hicles     | 1014  | 0.0 | 0.284 | 7.5   | LOS A   | 1.8      | 12.5     | 0.41   | 0.62      | 0.41   | 35.5 |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:39:47 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21748\_2041\_AAST\_PM]

Node: 21748 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P    | Performanc | :e - Vel | hicles |            |          |          |          |        |           |           |      |
|--------|------------|------------|----------|--------|------------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn       | Demand I   |          | Deg.   | Average    | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |            | Total      | HV       | Satn   | Delay      | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L  | veh/h      | %        | v/c    | sec        | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2         | 176        | 0.0      | 0.312  | 3.7        | LOS A    | 2.4      | 16.7     | 0.07   | 0.49      | 0.07      | 41.6 |
| 2      | T1         | 196        | 0.0      | 0.312  | 3.8        | LOSA     | 2.4      | 16.7     | 0.07   | 0.49      | 0.07      | 39.1 |
| 2      | R2         | 164        | 0.0      | 0.312  | 3.0<br>8.9 | LOSA     | 2.4      | 16.7     | 0.07   | 0.49      | 0.07      | 37.3 |
|        |            |            |          |        |            |          |          |          |        |           |           |      |
| Appro  | bach       | 536        | 0.0      | 0.312  | 5.3        | LOS A    | 2.4      | 16.7     | 0.07   | 0.49      | 0.07      | 39.4 |
| East:  | East Roa   | ad         |          |        |            |          |          |          |        |           |           |      |
| 4      | L2         | 142        | 0.0      | 0.130  | 4.6        | LOS A    | 0.8      | 5.4      | 0.46   | 0.54      | 0.46      | 40.1 |
| 5      | T1         | 1          | 0.0      | 0.130  | 4.8        | LOS A    | 0.8      | 5.4      | 0.46   | 0.54      | 0.46      | 39.4 |
| 6      | R2         | 4          | 0.0      | 0.130  | 9.9        | LOS A    | 0.8      | 5.4      | 0.46   | 0.54      | 0.46      | 34.7 |
| Appro  | bach       | 147        | 0.0      | 0.130  | 4.8        | LOS A    | 0.8      | 5.4      | 0.46   | 0.54      | 0.46      | 39.9 |
| North  | : Bells La | ane        |          |        |            |          |          |          |        |           |           |      |
| 7      | L2         | 3          | 0.0      | 0.100  | 4.7        | LOS A    | 0.6      | 4.0      | 0.49   | 0.52      | 0.49      | 36.5 |
| 8      | T1         | 103        | 0.0      | 0.100  | 5.0        | LOS A    | 0.6      | 4.0      | 0.49   | 0.52      | 0.49      | 38.5 |
| 9      | R2         | 1          | 0.0      | 0.100  | 10.0       | LOS A    | 0.6      | 4.0      | 0.49   | 0.52      | 0.49      | 36.6 |
| Appro  | bach       | 107        | 0.0      | 0.100  | 5.0        | LOS A    | 0.6      | 4.0      | 0.49   | 0.52      | 0.49      | 38.4 |
| West:  | West Re    | oad        |          |        |            |          |          |          |        |           |           |      |
| 10     | L2         | 1          | 0.0      | 0.147  | 5.7        | LOS A    | 0.8      | 5.8      | 0.52   | 0.69      | 0.52      | 31.6 |
| 11     | T1         | 1          | 0.0      | 0.147  | 5.9        | LOS A    | 0.8      | 5.8      | 0.52   | 0.69      | 0.52      | 32.6 |
| 12     | R2         | 152        | 0.0      | 0.147  | 11.0       | LOS A    | 0.8      | 5.8      | 0.52   | 0.69      | 0.52      | 32.0 |
| Appro  | bach       | 154        | 0.0      | 0.147  | 10.9       | LOS A    | 0.8      | 5.8      | 0.52   | 0.69      | 0.52      | 32.0 |
| All Ve | hicles     | 944        | 0.0      | 0.312  | 6.1        | LOS A    | 2.4      | 16.7     | 0.25   | 0.53      | 0.25      | 37.7 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:39:47 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21749\_2041\_AAST\_AM]

Node: 21749 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:46:48 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21749\_2041\_AAST\_AM]

Node: 21749 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement P    | Performanc   | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|------------|--------------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn       | Demand I     |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |            | Total        | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells L  | veh/h<br>ane | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/h |
| 1      | L2         | 8            | 0.0     | 0.055  | 3.7     | LOS A    | 0.3      | 2.1      | 0.05   | 0.39      | 0.05      | 39.4 |
| 2      | T1         | 75           | 0.0     | 0.055  | 3.8     | LOSA     | 0.3      | 2.1      | 0.05   | 0.39      | 0.05      | 40.4 |
| 3      | R2         | 4            | 0.0     | 0.055  | 8.9     | LOSA     | 0.3      | 2.1      | 0.05   | 0.39      | 0.05      | 39.8 |
| Appro  |            | 87           | 0.0     | 0.055  | 4.1     | LOSA     | 0.3      | 2.1      | 0.05   | 0.39      | 0.05      | 40.3 |
|        |            |              | 0.0     | 0.000  | 4.1     | LOOA     | 0.5      | 2.1      | 0.00   | 0.03      | 0.05      | 40.5 |
| East:  | East Roa   |              |         |        |         |          |          |          |        |           |           |      |
| 4      | L2         | 24           | 0.0     | 0.022  | 3.9     | LOS A    | 0.1      | 0.8      | 0.31   | 0.45      | 0.31      | 41.6 |
| 5      | T1         | 2            | 0.0     | 0.022  | 4.1     | LOS A    | 0.1      | 0.8      | 0.31   | 0.45      | 0.31      | 35.7 |
| 6      | R2         | 1            | 0.0     | 0.022  | 9.2     | LOS A    | 0.1      | 0.8      | 0.31   | 0.45      | 0.31      | 33.5 |
| Appro  | bach       | 27           | 0.0     | 0.022  | 4.1     | LOS A    | 0.1      | 0.8      | 0.31   | 0.45      | 0.31      | 41.0 |
| North  | : Bells La | ane          |         |        |         |          |          |          |        |           |           |      |
| 7      | L2         | 1            | 0.0     | 0.091  | 2.3     | LOS A    | 0.5      | 3.5      | 0.07   | 0.36      | 0.07      | 41.3 |
| 8      | T1         | 142          | 0.0     | 0.091  | 2.7     | LOS A    | 0.5      | 3.5      | 0.07   | 0.36      | 0.07      | 44.1 |
| 9      | R2         | 3            | 0.0     | 0.091  | 7.3     | LOS A    | 0.5      | 3.5      | 0.07   | 0.36      | 0.07      | 36.8 |
| Appro  | bach       | 146          | 0.0     | 0.091  | 2.8     | LOS A    | 0.5      | 3.5      | 0.07   | 0.36      | 0.07      | 43.9 |
| West:  | West Ro    | oad          |         |        |         |          |          |          |        |           |           |      |
| 10     | L2         | 4            | 0.0     | 0.007  | 2.6     | LOS A    | 0.0      | 0.3      | 0.22   | 0.42      | 0.22      | 35.7 |
| 11     | T1         | 4            | 0.0     | 0.007  | 2.9     | LOS A    | 0.0      | 0.3      | 0.22   | 0.42      | 0.22      | 39.9 |
| 12     | R2         | 1            | 0.0     | 0.007  | 7.6     | LOS A    | 0.0      | 0.3      | 0.22   | 0.42      | 0.22      | 38.3 |
| Appro  | bach       | 9            | 0.0     | 0.007  | 3.3     | LOS A    | 0.0      | 0.3      | 0.22   | 0.42      | 0.22      | 38.0 |
| All Ve | hicles     | 271          | 0.0     | 0.091  | 3.3     | LOS A    | 0.5      | 3.5      | 0.09   | 0.38      | 0.09      | 42.2 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:34:42 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21749\_2041\_AAST\_PM]

Node: 21749 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P         | erformanc | e - Vel | hicles |         |          |          |          |        |           |           |      |
|--------|-----------------|-----------|---------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn            | Demand I  |         | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |                 | Total     | HV      | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | : Bells La      | veh/h     | %       | v/c    | sec     | _        | veh      | m        | _      | _         | _         | km/l |
| 1      | L2              | 17        | 0.0     | 0.110  | 3.7     | LOS A    | 0.6      | 4.3      | 0.06   | 0.39      | 0.06      | 39.4 |
| 2      | T1              | 156       | 0.0     | 0.110  | 3.8     | LOSA     | 0.0      | 4.3      | 0.06   | 0.39      | 0.06      | 40.4 |
|        | R2              |           |         |        |         |          |          |          |        |           |           |      |
| 3      |                 | 8         | 0.0     | 0.110  | 8.9     | LOS A    | 0.6      | 4.3      | 0.06   | 0.39      | 0.06      | 39.  |
| Appro  | ach             | 181       | 0.0     | 0.110  | 4.1     | LOS A    | 0.6      | 4.3      | 0.06   | 0.39      | 0.06      | 40.2 |
| East:  | East: East Road |           |         |        |         |          |          |          |        |           |           |      |
| 4      | L2              | 14        | 0.0     | 0.013  | 3.6     | LOS A    | 0.1      | 0.5      | 0.22   | 0.44      | 0.22      | 42.  |
| 5      | T1              | 2         | 0.0     | 0.013  | 3.8     | LOS A    | 0.1      | 0.5      | 0.22   | 0.44      | 0.22      | 36.  |
| 6      | R2              | 1         | 0.0     | 0.013  | 8.9     | LOS A    | 0.1      | 0.5      | 0.22   | 0.44      | 0.22      | 34.  |
| Appro  | ach             | 17        | 0.0     | 0.013  | 3.9     | LOS A    | 0.1      | 0.5      | 0.22   | 0.44      | 0.22      | 41.  |
| North  | : Bells La      | ane       |         |        |         |          |          |          |        |           |           |      |
| 7      | L2              | 1         | 0.0     | 0.050  | 2.4     | LOS A    | 0.3      | 1.9      | 0.11   | 0.37      | 0.11      | 40.3 |
| 8      | T1              | 68        | 0.0     | 0.050  | 2.7     | LOS A    | 0.3      | 1.9      | 0.11   | 0.37      | 0.11      | 43.1 |
| 9      | R2              | 4         | 0.0     | 0.050  | 7.4     | LOS A    | 0.3      | 1.9      | 0.11   | 0.37      | 0.11      | 35.9 |
| Appro  | ach             | 74        | 0.0     | 0.050  | 3.0     | LOS A    | 0.3      | 1.9      | 0.11   | 0.37      | 0.11      | 42.7 |
| West:  | West Ro         | bad       |         |        |         |          |          |          |        |           |           |      |
| 10     | L2              | 4         | 0.0     | 0.015  | 3.0     | LOS A    | 0.1      | 0.5      | 0.33   | 0.53      | 0.33      | 32.2 |
| 11     | T1              | 5         | 0.0     | 0.015  | 3.3     | LOS A    | 0.1      | 0.5      | 0.33   | 0.53      | 0.33      | 36.  |
| 12     | R2              | 8         | 0.0     | 0.015  | 8.0     | LOS A    | 0.1      | 0.5      | 0.33   | 0.53      | 0.33      | 35.  |
| Appro  | ach             | 18        | 0.0     | 0.015  | 5.4     | LOS A    | 0.1      | 0.5      | 0.33   | 0.53      | 0.33      | 34.  |
| All Ve | hicles          | 289       | 0.0     | 0.110  | 3.9     | LOS A    | 0.6      | 4.3      | 0.10   | 0.40      | 0.10      | 40.  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:34:43 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21750\_2041\_AAST\_AM]

Node: 21750 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:45:49 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21750\_2041\_AAST\_AM]

Node: 21750 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | 5 5 5 5    |                |     |       |       |         |          |          |        |           |        |      |  |
|--------|------------|----------------|-----|-------|-------|---------|----------|----------|--------|-----------|--------|------|--|
| Mov    | Turn       |                |     |       |       |         |          |          |        |           |        |      |  |
| ID     |            | Total<br>veh/h | HV  | Satn  | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles |      |  |
| South  | : Bells L  |                | %   | v/c   | sec   | _       | veh      | m        | _      | _         | _      | km/ł |  |
| 1      | L2         | 1              | 0.0 | 0.052 | 3.7   | LOS A   | 0.3      | 2.0      | 0.07   | 0.37      | 0.07   | 40.5 |  |
| 2      | T1         | 79             | 0.0 | 0.052 | 3.8   | LOSA    | 0.3      | 2.0      | 0.07   | 0.37      | 0.07   | 43.5 |  |
| 3      | R2         | 1              | 0.0 | 0.052 | 8.9   | LOS A   | 0.3      | 2.0      | 0.07   | 0.37      | 0.07   | 40.  |  |
| Appro  |            | 81             | 0.0 | 0.052 | 3.9   | LOS A   | 0.3      | 2.0      | 0.07   | 0.37      | 0.07   | 43.5 |  |
| East:  | East Roa   | ad             |     |       |       |         |          |          |        |           |        |      |  |
| 4      | L2         | 1              | 0.0 | 0.007 | 4.0   | LOS A   | 0.0      | 0.2      | 0.31   | 0.56      | 0.31   | 37.0 |  |
| 5      | T1         | 1              | 0.0 | 0.007 | 4.1   | LOS A   | 0.0      | 0.2      | 0.31   | 0.56      | 0.31   | 30.  |  |
| 6      | R2         | 6              | 0.0 | 0.007 | 9.3   | LOS A   | 0.0      | 0.2      | 0.31   | 0.56      | 0.31   | 31.8 |  |
| Appro  | bach       | 8              | 0.0 | 0.007 | 8.0   | LOS A   | 0.0      | 0.2      | 0.31   | 0.56      | 0.31   | 32.3 |  |
| North  | : Bells La | ane            |     |       |       |         |          |          |        |           |        |      |  |
| 7      | L2         | 7              | 0.0 | 0.092 | 3.4   | LOS A   | 0.5      | 3.6      | 0.03   | 0.38      | 0.03   | 41.7 |  |
| 8      | T1         | 146            | 0.0 | 0.092 | 3.6   | LOS A   | 0.5      | 3.6      | 0.03   | 0.38      | 0.03   | 50.5 |  |
| 9      | R2         | 2              | 0.0 | 0.092 | 8.7   | LOS A   | 0.5      | 3.6      | 0.03   | 0.38      | 0.03   | 38.1 |  |
| Appro  | bach       | 156            | 0.0 | 0.092 | 3.6   | LOS A   | 0.5      | 3.6      | 0.03   | 0.38      | 0.03   | 49.9 |  |
| West:  | West R     | oad            |     |       |       |         |          |          |        |           |        |      |  |
| 10     | L2         | 7              | 0.0 | 0.007 | 2.7   | LOS A   | 0.0      | 0.3      | 0.23   | 0.43      | 0.23   | 39.1 |  |
| 11     | T1         | 1              | 0.0 | 0.007 | 3.0   | LOS A   | 0.0      | 0.3      | 0.23   | 0.43      | 0.23   | 40.0 |  |
| 12     | R2         | 1              | 0.0 | 0.007 | 7.7   | LOS A   | 0.0      | 0.3      | 0.23   | 0.43      | 0.23   | 39.2 |  |
| Appro  | bach       | 9              | 0.0 | 0.007 | 3.3   | LOS A   | 0.0      | 0.3      | 0.23   | 0.43      | 0.23   | 39.2 |  |
| All Ve | hicles     | 255            | 0.0 | 0.092 | 3.8   | LOS A   | 0.5      | 3.6      | 0.06   | 0.38      | 0.06   | 46.  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:27:35 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21750\_2041\_AAST\_PM]

Node: 21750 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P    | erformanc      | e - Vel | hicles      |              |          |                 |               |        |           |           |               |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn       | Demand I       |         | Deg.        | Average      | Level of | 95% Back        |               | Prop.  |           | Aver. No. |               |
| ID     |            | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : Bells L  |                | /0      | V/C         | 360          | _        | VEII            | 111           | _      |           | _         | KI 1/1        |
| 1      | L2         | 1              | 0.0     | 0.101       | 3.7          | LOS A    | 0.6             | 4.0           | 0.07   | 0.37      | 0.07      | 40.6          |
| 2      | T1         | 160            | 0.0     | 0.101       | 3.9          | LOS A    | 0.6             | 4.0           | 0.07   | 0.37      | 0.07      | 43.5          |
| 3      | R2         | 1              | 0.0     | 0.101       | 8.9          | LOS A    | 0.6             | 4.0           | 0.07   | 0.37      | 0.07      | 40.7          |
| Appro  | ach        | 162            | 0.0     | 0.101       | 3.9          | LOS A    | 0.6             | 4.0           | 0.07   | 0.37      | 0.07      | 43.5          |
| East:  | East Roa   | ad             |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2         | 1              | 0.0     | 0.006       | 3.6          | LOS A    | 0.0             | 0.2           | 0.21   | 0.56      | 0.21      | 37.6          |
| 5      | T1         | 1              | 0.0     | 0.006       | 3.8          | LOS A    | 0.0             | 0.2           | 0.21   | 0.56      | 0.21      | 31.2          |
| 6      | R2         | 6              | 0.0     | 0.006       | 8.9          | LOS A    | 0.0             | 0.2           | 0.21   | 0.56      | 0.21      | 32.3          |
| Appro  | ach        | 8              | 0.0     | 0.006       | 7.6          | LOS A    | 0.0             | 0.2           | 0.21   | 0.56      | 0.21      | 32.8          |
| North  | : Bells La | ane            |         |             |              |          |                 |               |        |           |           |               |
| 7      | L2         | 8              | 0.0     | 0.051       | 3.4          | LOS A    | 0.3             | 2.0           | 0.03   | 0.39      | 0.03      | 41.4          |
| 8      | T1         | 74             | 0.0     | 0.051       | 3.6          | LOS A    | 0.3             | 2.0           | 0.03   | 0.39      | 0.03      | 50.1          |
| 9      | R2         | 3              | 0.0     | 0.051       | 8.7          | LOS A    | 0.3             | 2.0           | 0.03   | 0.39      | 0.03      | 37.8          |
| Appro  | ach        | 85             | 0.0     | 0.051       | 3.7          | LOS A    | 0.3             | 2.0           | 0.03   | 0.39      | 0.03      | 48.8          |
| West:  | West Re    | bad            |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2         | 6              | 0.0     | 0.007       | 3.0          | LOS A    | 0.0             | 0.2           | 0.33   | 0.45      | 0.33      | 38.2          |
| 11     | T1         | 1              | 0.0     | 0.007       | 3.4          | LOS A    | 0.0             | 0.2           | 0.33   | 0.45      | 0.33      | 39.0          |
| 12     | R2         | 1              | 0.0     | 0.007       | 8.1          | LOS A    | 0.0             | 0.2           | 0.33   | 0.45      | 0.33      | 38.4          |
| Appro  | ach        | 8              | 0.0     | 0.007       | 3.7          | LOS A    | 0.0             | 0.2           | 0.33   | 0.45      | 0.33      | 38.3          |
| All Ve | hicles     | 264            | 0.0     | 0.101       | 4.0          | LOS A    | 0.6             | 4.0           | 0.07   | 0.39      | 0.07      | 44.5          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 1:27:36 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **Site: 101 [21782\_2041\_AAST\_AM]**

Node: 21782 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:58:37 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21782\_2041\_AAST\_AM]

Node: 21782 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move              | <b>Novement Performance - Vehicles</b><br>Mov Turn Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Aver. No. Average |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|------|--|
| Mov<br>ID         | Turn                                                                                                                                      | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |  |
| East:             | East Roa                                                                                                                                  | ad                         |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |  |
| 2                 | T1                                                                                                                                        | 7                          | 0.0              | 0.006               | 4.0                     | LOS A               | 0.0                         | 0.2                       | 0.02            | 0.47                   | 0.02                | 48.8 |  |
| 3                 | R2                                                                                                                                        | 1                          | 0.0              | 0.006               | 8.2                     | LOS A               | 0.0                         | 0.2                       | 0.02            | 0.47                   | 0.02                | 36.8 |  |
| Appro             | ach                                                                                                                                       | 8                          | 0.0              | 0.006               | 4.5                     | LOS A               | 0.0                         | 0.2                       | 0.02            | 0.47                   | 0.02                | 47.6 |  |
| North: North Road |                                                                                                                                           |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |  |
| 4                 | L2                                                                                                                                        | 1                          | 0.0              | 0.002               | 3.5                     | LOS A               | 0.0                         | 0.1                       | 0.08            | 0.57                   | 0.08                | 35.3 |  |
| 6                 | R2                                                                                                                                        | 1                          | 0.0              | 0.002               | 7.9                     | LOS A               | 0.0                         | 0.1                       | 0.08            | 0.57                   | 0.08                | 45.4 |  |
| Appro             | ach                                                                                                                                       | 2                          | 0.0              | 0.002               | 5.7                     | LOS A               | 0.0                         | 0.1                       | 0.08            | 0.57                   | 0.08                | 41.0 |  |
| West:             | West Ro                                                                                                                                   | bad                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |  |
| 7                 | L2                                                                                                                                        | 2                          | 0.0              | 0.009               | 4.0                     | LOS A               | 0.0                         | 0.3                       | 0.02            | 0.44                   | 0.02                | 44.7 |  |
| 8                 | T1                                                                                                                                        | 13                         | 0.0              | 0.009               | 4.3                     | LOS A               | 0.0                         | 0.3                       | 0.02            | 0.44                   | 0.02                | 45.9 |  |
| Appro             | ach                                                                                                                                       | 15                         | 0.0              | 0.009               | 4.3                     | LOS A               | 0.0                         | 0.3                       | 0.02            | 0.44                   | 0.02                | 45.8 |  |
| All Ve            | hicles                                                                                                                                    | 25                         | 0.0              | 0.009               | 4.5                     | LOS A               | 0.0                         | 0.3                       | 0.02            | 0.46                   | 0.02                | 46.0 |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:02 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21782\_2041\_AAST\_PM]

Node: 21782 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ment P            | erformanc                  | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|-------------------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn              | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| East:     | East Roa          | ad                         |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 2         | T1                | 11                         | 0.0              | 0.008               | 4.0                     | LOS A               | 0.0                         | 0.3                       | 0.03            | 0.45                   | 0.03                | 48.9                     |
| 3         | R2                | 1                          | 0.0              | 0.008               | 8.2                     | LOS A               | 0.0                         | 0.3                       | 0.03            | 0.45                   | 0.03                | 37.0                     |
| Appro     | ach               | 12                         | 0.0              | 0.008               | 4.4                     | LOS A               | 0.0                         | 0.3                       | 0.03            | 0.45                   | 0.03                | 48.1                     |
| North:    | North: North Road |                            |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2                | 1                          | 0.0              | 0.002               | 3.4                     | LOS A               | 0.0                         | 0.1                       | 0.04            | 0.61                   | 0.04                | 34.6                     |
| 6         | R2                | 2                          | 0.0              | 0.002               | 7.8                     | LOS A               | 0.0                         | 0.1                       | 0.04            | 0.61                   | 0.04                | 44.5                     |
| Appro     | ach               | 3                          | 0.0              | 0.002               | 6.4                     | LOS A               | 0.0                         | 0.1                       | 0.04            | 0.61                   | 0.04                | 41.7                     |
| West:     | West Re           | bad                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2                | 1                          | 0.0              | 0.004               | 4.0                     | LOS A               | 0.0                         | 0.1                       | 0.02            | 0.44                   | 0.02                | 44.7                     |
| 8         | T1                | 4                          | 0.0              | 0.004               | 4.3                     | LOS A               | 0.0                         | 0.1                       | 0.02            | 0.44                   | 0.02                | 45.9                     |
| Appro     | ach               | 5                          | 0.0              | 0.004               | 4.3                     | LOS A               | 0.0                         | 0.1                       | 0.02            | 0.44                   | 0.02                | 45.7                     |
| All Vel   | hicles            | 20                         | 0.0              | 0.008               | 4.7                     | LOS A               | 0.0                         | 0.3                       | 0.03            | 0.48                   | 0.03                | 46.4                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:50:03 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21804\_2041\_AAST\_AM]

Node: 21804 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   |             |                       |      |       |       |         |          |          |        |           |        |      |  |  |
|--------|-------------|-----------------------|------|-------|-------|---------|----------|----------|--------|-----------|--------|------|--|--|
| Mov    | Turn        |                       |      |       |       |         |          |          |        |           |        |      |  |  |
| ID     |             | Total                 | HV   | Satn  | Delay | Service | Vehicles | Distance | Queued | Stop Rate | Cycles |      |  |  |
| South  | East: Sc    | veh/h<br>outh East Ro | %    | v/c   | sec   | _       | veh      | m        | _      | _         | _      | km/h |  |  |
| 1      | L2          | 3                     | 0.0  | 0.027 | 3.0   | LOS A   | 0.1      | 1.0      | 0.33   | 0.59      | 0.33   | 43.7 |  |  |
| 2      | T1          | 3                     | 0.0  | 0.027 | 3.5   | LOSA    | 0.1      | 1.0      | 0.33   | 0.59      | 0.33   | 31.1 |  |  |
| -      |             |                       |      |       |       |         |          |          |        |           |        |      |  |  |
| 3      | R2          | 25                    | 0.0  | 0.027 | 7.2   | LOSA    | 0.1      | 1.0      | 0.33   | 0.59      | 0.33   | 35.0 |  |  |
| Appro  | bach        | 32                    | 0.0  | 0.027 | 6.4   | LOS A   | 0.1      | 1.0      | 0.33   | 0.59      | 0.33   | 35.8 |  |  |
| North  | East: No    | orth East Roa         | ad   |       |       |         |          |          |        |           |        |      |  |  |
| 4      | L2          | 21                    | 0.0  | 0.109 | 4.1   | LOS A   | 0.6      | 4.5      | 0.12   | 0.43      | 0.12   | 38.5 |  |  |
| 5      | T1          | 137                   | 0.0  | 0.109 | 4.4   | LOS A   | 0.6      | 4.5      | 0.12   | 0.43      | 0.12   | 50.5 |  |  |
| 6      | R2          | 1                     | 0.0  | 0.109 | 8.5   | LOS A   | 0.6      | 4.5      | 0.12   | 0.43      | 0.12   | 38.5 |  |  |
| Appro  | ach         | 159                   | 0.0  | 0.109 | 4.4   | LOS A   | 0.6      | 4.5      | 0.12   | 0.43      | 0.12   | 49.5 |  |  |
| North  | West: No    | orth West Ro          | oad  |       |       |         |          |          |        |           |        |      |  |  |
| 7      | L2          | 1                     | 0.0  | 0.018 | 3.8   | LOS A   | 0.1      | 0.6      | 0.31   | 0.58      | 0.31   | 36.6 |  |  |
| 8      | T1          | 3                     | 0.0  | 0.018 | 4.2   | LOS A   | 0.1      | 0.6      | 0.31   | 0.58      | 0.31   | 29.4 |  |  |
| 9      | R2          | 17                    | 0.0  | 0.018 | 8.2   | LOS A   | 0.1      | 0.6      | 0.31   | 0.58      | 0.31   | 44.5 |  |  |
| Appro  | ach         | 21                    | 0.0  | 0.018 | 7.4   | LOS A   | 0.1      | 0.6      | 0.31   | 0.58      | 0.31   | 42.8 |  |  |
| South  | West: S     | outh West R           | load |       |       |         |          |          |        |           |        |      |  |  |
| 10     | L2          | 7                     | 0.0  | 0.088 | 4.2   | LOS A   | 0.5      | 3.5      | 0.14   | 0.42      | 0.14   | 43.1 |  |  |
| 11     | T1          | 114                   | 0.0  | 0.088 | 4.5   | LOS A   | 0.5      | 3.5      | 0.14   | 0.42      | 0.14   | 50.2 |  |  |
| 12     | R2          | 2                     | 0.0  | 0.088 | 8.6   | LOS A   | 0.5      | 3.5      | 0.14   | 0.42      | 0.14   | 44.1 |  |  |
| Appro  | pproach 123 |                       |      | 0.088 | 4.5   | LOS A   | 0.5      | 3.5      | 0.14   | 0.42      | 0.14   | 49.7 |  |  |
| All Ve | hicles      | 335                   | 0.0  | 0.109 | 4.8   | LOS A   | 0.6      | 4.5      | 0.16   | 0.45      | 0.16   | 48.2 |  |  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 9:34:18 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21804\_2041\_AAST\_PM]

Node: 21804 2041 AAST PM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:50:12 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8
## ₩ Site: 101 [21804\_2041\_AAST\_PM]

Node: 21804 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement F  | erformanc             | ce - Vel | nicles |         |          |          |          |        |           |           |      |
|--------|----------|-----------------------|----------|--------|---------|----------|----------|----------|--------|-----------|-----------|------|
| Mov    | Turn     | Demand I              |          | Deg.   | Average | Level of | 95% Back |          | Prop.  |           | Aver. No. |      |
| ID     |          | Total                 | HV       | Satn   | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Cycles    |      |
| South  | East: So | veh/h<br>outh East Ro | %        | v/c    | sec     |          | veh      | m        |        |           |           | km/h |
| 1      | L2       | 2                     | 0.0      | 0.025  | 2.9     | LOS A    | 0.1      | 0.9      | 0.31   | 0.59      | 0.31      | 43.6 |
| 2      | T1       | 3                     | 0.0      | 0.025  | 3.4     | LOSA     | 0.1      | 0.9      | 0.31   | 0.59      | 0.31      | 31.1 |
|        |          |                       |          |        |         |          |          |          |        |           |           |      |
| 3      | R2       | 24                    | 0.0      | 0.025  | 7.1     | LOSA     | 0.1      | 0.9      | 0.31   | 0.59      | 0.31      | 35.0 |
| Appro  | bach     | 29                    | 0.0      | 0.025  | 6.4     | LOS A    | 0.1      | 0.9      | 0.31   | 0.59      | 0.31      | 35.5 |
| North  | East: No | rth East Roa          | ad       |        |         |          |          |          |        |           |           |      |
| 4      | L2       | 32                    | 0.0      | 0.109  | 4.1     | LOS A    | 0.6      | 4.5      | 0.10   | 0.43      | 0.10      | 38.8 |
| 5      | T1       | 132                   | 0.0      | 0.109  | 4.4     | LOS A    | 0.6      | 4.5      | 0.10   | 0.43      | 0.10      | 50.8 |
| 6      | R2       | 1                     | 0.0      | 0.109  | 8.5     | LOS A    | 0.6      | 4.5      | 0.10   | 0.43      | 0.10      | 38.7 |
| Appro  | bach     | 164                   | 0.0      | 0.109  | 4.4     | LOS A    | 0.6      | 4.5      | 0.10   | 0.43      | 0.10      | 49.2 |
|        |          |                       |          |        |         |          |          |          |        |           |           |      |
|        |          | orth West Ro          |          |        |         |          |          |          |        |           |           |      |
| 7      | L2       | 1                     | 0.0      | 0.012  | 3.9     | LOS A    | 0.1      | 0.4      | 0.34   | 0.57      | 0.34      | 37.1 |
| 8      | T1       | 3                     | 0.0      | 0.012  | 4.3     | LOS A    | 0.1      | 0.4      | 0.34   | 0.57      | 0.34      | 29.8 |
| 9      | R2       | 9                     | 0.0      | 0.012  | 8.3     | LOS A    | 0.1      | 0.4      | 0.34   | 0.57      | 0.34      | 45.0 |
| Appro  | bach     | 14                    | 0.0      | 0.012  | 7.0     | LOS A    | 0.1      | 0.4      | 0.34   | 0.57      | 0.34      | 42.2 |
| South  | West: S  | outh West R           | load     |        |         |          |          |          |        |           |           |      |
| 10     | L2       | 12                    | 0.0      | 0.105  | 4.2     | LOS A    | 0.6      | 4.3      | 0.14   | 0.43      | 0.14      | 43.1 |
| 11     | T1       | 136                   | 0.0      | 0.105  | 4.4     | LOS A    | 0.6      | 4.3      | 0.14   | 0.43      | 0.14      | 50.2 |
| 12     | R2       | 3                     | 0.0      | 0.105  | 8.6     | LOS A    | 0.6      | 4.3      | 0.14   | 0.43      | 0.14      | 44.1 |
| Appro  | bach     | 151                   | 0.0      | 0.105  | 4.5     | LOS A    | 0.6      | 4.3      | 0.14   | 0.43      | 0.14      | 49.6 |
| All Ve | hicles   | 358                   | 0.0      | 0.109  | 4.7     | LOS A    | 0.6      | 4.5      | 0.14   | 0.45      | 0.14      | 48.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 9:34:19 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# **Site: 101 [21807\_2041\_AAST\_AM]**

Node: 21807 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:55:39 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21807\_2041\_AAST\_AM]

Node: 21807 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ement F | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| East:     | East Ro | ad                         |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 2         | T1      | 159                        | 0.0              | 0.103               | 4.3                     | LOS A               | 0.6                         | 4.2                       | 0.07            | 0.43                   | 0.07                | 41.1                     |
| 3         | R2      | 3                          | 0.0              | 0.103               | 8.5                     | LOS A               | 0.6                         | 4.2                       | 0.07            | 0.43                   | 0.07                | 37.5                     |
| Appro     | ach     | 162                        | 0.0              | 0.103               | 4.4                     | LOS A               | 0.6                         | 4.2                       | 0.07            | 0.43                   | 0.07                | 41.0                     |
| North:    | North F | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2      | 6                          | 0.0              | 0.012               | 4.1                     | LOS A               | 0.1                         | 0.4                       | 0.27            | 0.56                   | 0.27                | 35.9                     |
| 6         | R2      | 8                          | 0.0              | 0.012               | 8.5                     | LOS A               | 0.1                         | 0.4                       | 0.27            | 0.56                   | 0.27                | 33.6                     |
| Appro     | ach     | 15                         | 0.0              | 0.012               | 6.6                     | LOS A               | 0.1                         | 0.4                       | 0.27            | 0.56                   | 0.27                | 34.6                     |
| West:     | West R  | oad                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2      | 9                          | 0.0              | 0.075               | 4.1                     | LOS A               | 0.4                         | 2.8                       | 0.03            | 0.43                   | 0.03                | 39.3                     |
| 8         | T1      | 114                        | 0.0              | 0.075               | 4.3                     | LOS A               | 0.4                         | 2.8                       | 0.03            | 0.43                   | 0.03                | 41.6                     |
| Appro     | ach     | 123                        | 0.0              | 0.075               | 4.3                     | LOS A               | 0.4                         | 2.8                       | 0.03            | 0.43                   | 0.03                | 41.4                     |
| All Ve    | hicles  | 300                        | 0.0              | 0.103               | 4.5                     | LOS A               | 0.6                         | 4.2                       | 0.06            | 0.43                   | 0.06                | 40.8                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:57 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21807\_2041\_AAST\_PM]

Node: 21807 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ement F | Performanc                 | ce - Ve          | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|---------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn    | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| East:     | East Ro | ad                         |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 2         | T1      | 134                        | 0.0              | 0.087               | 4.3                     | LOS A               | 0.5                         | 3.6                       | 0.06            | 0.43                   | 0.06                | 41.1                     |
| 3         | R2      | 4                          | 0.0              | 0.087               | 8.5                     | LOS A               | 0.5                         | 3.6                       | 0.06            | 0.43                   | 0.06                | 37.5                     |
| Appro     | ach     | 138                        | 0.0              | 0.087               | 4.5                     | LOS A               | 0.5                         | 3.6                       | 0.06            | 0.43                   | 0.06                | 41.0                     |
| North:    | North F | Road                       |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2      | 6                          | 0.0              | 0.011               | 4.3                     | LOS A               | 0.1                         | 0.4                       | 0.31            | 0.55                   | 0.31                | 36.1                     |
| 6         | R2      | 6                          | 0.0              | 0.011               | 8.7                     | LOS A               | 0.1                         | 0.4                       | 0.31            | 0.55                   | 0.31                | 33.8                     |
| Appro     | ach     | 13                         | 0.0              | 0.011               | 6.5                     | LOS A               | 0.1                         | 0.4                       | 0.31            | 0.55                   | 0.31                | 34.9                     |
| West:     | West R  | oad                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2      | 14                         | 0.0              | 0.098               | 4.1                     | LOS A               | 0.5                         | 3.7                       | 0.04            | 0.43                   | 0.04                | 39.3                     |
| 8         | T1      | 145                        | 0.0              | 0.098               | 4.3                     | LOS A               | 0.5                         | 3.7                       | 0.04            | 0.43                   | 0.04                | 41.5                     |
| Appro     | ach     | 159                        | 0.0              | 0.098               | 4.3                     | LOS A               | 0.5                         | 3.7                       | 0.04            | 0.43                   | 0.04                | 41.3                     |
| All Ve    | hicles  | 309                        | 0.0              | 0.098               | 4.5                     | LOS A               | 0.5                         | 3.7                       | 0.06            | 0.44                   | 0.06                | 40.9                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:58 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21825\_2041\_AAST\_AM]

Node: 21825 2041 AAST AM Peak Period Site Category: (None) Roundabout



Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21825\_2041\_AAST\_AM]

Node: 21825 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ement F  | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | East: So | outh East Ro               | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 2         | T1       | 62                         | 0.0              | 0.049               | 3.6                     | LOS A               | 0.3                         | 2.0                       | 0.02            | 0.50                   | 0.02                | 46.5                     |
| 3         | R2       | 20                         | 0.0              | 0.049               | 7.6                     | LOS A               | 0.3                         | 2.0                       | 0.02            | 0.50                   | 0.02                | 34.4                     |
| Appro     | ach      | 82                         | 0.0              | 0.049               | 4.6                     | LOS A               | 0.3                         | 2.0                       | 0.02            | 0.50                   | 0.02                | 43.9                     |
| North     | East: No | rth East Roa               | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2       | 118                        | 0.0              | 0.105               | 3.9                     | LOS A               | 0.6                         | 4.0                       | 0.38            | 0.52                   | 0.38                | 35.2                     |
| 6         | R2       | 1                          | 0.0              | 0.105               | 8.1                     | LOS A               | 0.6                         | 4.0                       | 0.38            | 0.52                   | 0.38                | 46.2                     |
| Appro     | ach      | 119                        | 0.0              | 0.105               | 3.9                     | LOS A               | 0.6                         | 4.0                       | 0.38            | 0.52                   | 0.38                | 35.3                     |
| North     | West: No | orth West Ro               | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2       | 3                          | 0.0              | 0.126               | 4.1                     | LOS A               | 0.7                         | 4.9                       | 0.11            | 0.42                   | 0.11                | 40.9                     |
| 8         | T1       | 185                        | 0.0              | 0.126               | 4.4                     | LOS A               | 0.7                         | 4.9                       | 0.11            | 0.42                   | 0.11                | 42.2                     |
| Appro     | ach      | 188                        | 0.0              | 0.126               | 4.4                     | LOS A               | 0.7                         | 4.9                       | 0.11            | 0.42                   | 0.11                | 42.2                     |
| All Ve    | hicles   | 389                        | 0.0              | 0.126               | 4.3                     | LOS A               | 0.7                         | 4.9                       | 0.17            | 0.47                   | 0.17                | 41.0                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:56 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21825\_2041\_AAST\_PM]

Node: 21825 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ement F  | Performanc                 | e - Ve           | hicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn     | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | East: So | outh East Ro               | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 2         | T1       | 131                        | 0.0              | 0.099               | 3.6                     | LOS A               | 0.6                         | 4.1                       | 0.02            | 0.50                   | 0.02                | 46.6                     |
| 3         | R2       | 39                         | 0.0              | 0.099               | 7.6                     | LOS A               | 0.6                         | 4.1                       | 0.02            | 0.50                   | 0.02                | 34.5                     |
| Appro     | ach      | 169                        | 0.0              | 0.099               | 4.5                     | LOS A               | 0.6                         | 4.1                       | 0.02            | 0.50                   | 0.02                | 44.2                     |
| North     | East: No | orth East Roa              | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2       | 57                         | 0.0              | 0.047               | 3.2                     | LOS A               | 0.2                         | 1.7                       | 0.25            | 0.47                   | 0.25                | 36.1                     |
| 6         | R2       | 1                          | 0.0              | 0.047               | 7.5                     | LOS A               | 0.2                         | 1.7                       | 0.25            | 0.47                   | 0.25                | 47.2                     |
| Appro     | ach      | 58                         | 0.0              | 0.047               | 3.3                     | LOS A               | 0.2                         | 1.7                       | 0.25            | 0.47                   | 0.25                | 36.3                     |
| North     | West: N  | orth West Ro               | ad               |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 7         | L2       | 2                          | 0.0              | 0.066               | 4.2                     | LOS A               | 0.3                         | 2.4                       | 0.15            | 0.42                   | 0.15                | 40.3                     |
| 8         | T1       | 86                         | 0.0              | 0.066               | 4.5                     | LOS A               | 0.3                         | 2.4                       | 0.15            | 0.42                   | 0.15                | 41.7                     |
| Appro     | ach      | 88                         | 0.0              | 0.066               | 4.5                     | LOS A               | 0.3                         | 2.4                       | 0.15            | 0.42                   | 0.15                | 41.7                     |
| All Ve    | hicles   | 316                        | 0.0              | 0.099               | 4.3                     | LOS A               | 0.6                         | 4.1                       | 0.10            | 0.47                   | 0.10                | 42.3                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:56 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

### **Site: 101 [21886\_2041\_AAST\_AM]**

Node: 21886 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:45:31 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21886\_2041\_AAST\_AM]

Node: 21886 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ement F   | Performanc        | e - Vel     | hicles       |                  |                     |                      |                      |        |                        |                     |      |
|-----------|-----------|-------------------|-------------|--------------|------------------|---------------------|----------------------|----------------------|--------|------------------------|---------------------|------|
| Mov<br>ID | Turn      | Demand I<br>Total | Flows<br>HV | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | of Queue<br>Distance | Prop.  | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |
| U         |           | veh/h             | пv<br>%     | V/C          | sec              | Service             | venicies<br>veh      | m                    | Queueu |                        | Cycles              | km/h |
| South     | : South I |                   |             |              |                  |                     |                      |                      |        |                        |                     |      |
| 1         | L2        | 1                 | 0.0         | 0.015        | 3.5              | LOS A               | 0.1                  | 0.6                  | 0.03   | 0.44                   | 0.03                | 39.0 |
| 2         | T1        | 21                | 0.0         | 0.015        | 3.8              | LOS A               | 0.1                  | 0.6                  | 0.03   | 0.44                   | 0.03                | 37.6 |
| 3         | R2        | 1                 | 0.0         | 0.015        | 8.0              | LOS A               | 0.1                  | 0.6                  | 0.03   | 0.44                   | 0.03                | 35.8 |
| Appro     | bach      | 23                | 0.0         | 0.015        | 4.0              | LOS A               | 0.1                  | 0.6                  | 0.03   | 0.44                   | 0.03                | 37.6 |
| East:     | East Roa  | ad                |             |              |                  |                     |                      |                      |        |                        |                     |      |
| 4         | L2        | 8                 | 0.0         | 0.009        | 3.3              | LOS A               | 0.0                  | 0.3                  | 0.26   | 0.47                   | 0.26                | 36.1 |
| 5         | T1        | 1                 | 0.0         | 0.009        | 3.7              | LOS A               | 0.0                  | 0.3                  | 0.26   | 0.47                   | 0.26                | 37.7 |
| 6         | R2        | 1                 | 0.0         | 0.009        | 7.6              | LOS A               | 0.0                  | 0.3                  | 0.26   | 0.47                   | 0.26                | 32.0 |
| Appro     | bach      | 11                | 0.0         | 0.009        | 3.8              | LOS A               | 0.0                  | 0.3                  | 0.26   | 0.47                   | 0.26                | 35.9 |
| North     | : North F | Road              |             |              |                  |                     |                      |                      |        |                        |                     |      |
| 7         | L2        | 1                 | 0.0         | 0.064        | 2.5              | LOS A               | 0.3                  | 2.4                  | 0.03   | 0.41                   | 0.03                | 37.0 |
| 8         | T1        | 102               | 0.0         | 0.064        | 2.9              | LOS A               | 0.3                  | 2.4                  | 0.03   | 0.41                   | 0.03                | 40.1 |
| 9         | R2        | 1                 | 0.0         | 0.064        | 6.7              | LOS A               | 0.3                  | 2.4                  | 0.03   | 0.41                   | 0.03                | 37.6 |
| Appro     | bach      | 104               | 0.0         | 0.064        | 3.0              | LOS A               | 0.3                  | 2.4                  | 0.03   | 0.41                   | 0.03                | 40.0 |
| West:     | West R    | oad               |             |              |                  |                     |                      |                      |        |                        |                     |      |
| 10        | L2        | 1                 | 0.0         | 0.002        | 3.8              | LOS A               | 0.0                  | 0.1                  | 0.11   | 0.52                   | 0.11                | 33.7 |
| 11        | T1        | 1                 | 0.0         | 0.002        | 4.1              | LOS A               | 0.0                  | 0.1                  | 0.11   | 0.52                   | 0.11                | 35.0 |
| 12        | R2        | 1                 | 0.0         | 0.002        | 8.3              | LOS A               | 0.0                  | 0.1                  | 0.11   | 0.52                   | 0.11                | 34.6 |
| Appro     | bach      | 3                 | 0.0         | 0.002        | 5.4              | LOS A               | 0.0                  | 0.1                  | 0.11   | 0.52                   | 0.11                | 34.5 |
| All Ve    | hicles    | 141               | 0.0         | 0.064        | 3.3              | LOS A               | 0.3                  | 2.4                  | 0.05   | 0.42                   | 0.05                | 39.1 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:51 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21886\_2041\_AAST\_PM]

Node: 21886 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P   | erformanc      | e - Vel | hicles      |              |          |                 |               |        |           |           |               |
|--------|-----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn      | Demand F       |         | Deg.        | Average      | Level of | 95% Back        |               | Prop.  |           | Aver. No. |               |
| ID     |           | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : South I |                | ,,,     |             | 000          |          | Volt            |               |        |           |           |               |
| 1      | L2        | 1              | 0.0     | 0.024       | 3.5          | LOS A    | 0.1             | 0.9           | 0.03   | 0.43      | 0.03      | 39.2          |
| 2      | T1        | 35             | 0.0     | 0.024       | 3.8          | LOS A    | 0.1             | 0.9           | 0.03   | 0.43      | 0.03      | 37.8          |
| 3      | R2        | 1              | 0.0     | 0.024       | 8.0          | LOS A    | 0.1             | 0.9           | 0.03   | 0.43      | 0.03      | 36.0          |
| Appro  | bach      | 37             | 0.0     | 0.024       | 3.9          | LOS A    | 0.1             | 0.9           | 0.03   | 0.43      | 0.03      | 37.8          |
| East:  | East Roa  | ad             |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2        | 12             | 0.0     | 0.011       | 3.0          | LOS A    | 0.1             | 0.4           | 0.18   | 0.47      | 0.18      | 36.9          |
| 5      | T1        | 1              | 0.0     | 0.011       | 3.4          | LOS A    | 0.1             | 0.4           | 0.18   | 0.47      | 0.18      | 38.6          |
| 6      | R2        | 1              | 0.0     | 0.011       | 7.3          | LOS A    | 0.1             | 0.4           | 0.18   | 0.47      | 0.18      | 32.8          |
| Appro  | bach      | 14             | 0.0     | 0.011       | 3.4          | LOS A    | 0.1             | 0.4           | 0.18   | 0.47      | 0.18      | 36.7          |
| North  | : North F | Road           |         |             |              |          |                 |               |        |           |           |               |
| 7      | L2        | 1              | 0.0     | 0.033       | 2.5          | LOS A    | 0.2             | 1.2           | 0.03   | 0.41      | 0.03      | 36.9          |
| 8      | T1        | 49             | 0.0     | 0.033       | 2.9          | LOS A    | 0.2             | 1.2           | 0.03   | 0.41      | 0.03      | 40.0          |
| 9      | R2        | 1              | 0.0     | 0.033       | 6.7          | LOS A    | 0.2             | 1.2           | 0.03   | 0.41      | 0.03      | 37.5          |
| Appro  | bach      | 52             | 0.0     | 0.033       | 3.0          | LOS A    | 0.2             | 1.2           | 0.03   | 0.41      | 0.03      | 39.8          |
| West:  | West Re   | bad            |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2        | 1              | 0.0     | 0.002       | 3.9          | LOS A    | 0.0             | 0.1           | 0.14   | 0.51      | 0.14      | 33.4          |
| 11     | T1        | 1              | 0.0     | 0.002       | 4.1          | LOS A    | 0.0             | 0.1           | 0.14   | 0.51      | 0.14      | 34.7          |
| 12     | R2        | 1              | 0.0     | 0.002       | 8.3          | LOS A    | 0.0             | 0.1           | 0.14   | 0.51      | 0.14      | 34.4          |
| Appro  | bach      | 3              | 0.0     | 0.002       | 5.4          | LOS A    | 0.0             | 0.1           | 0.14   | 0.51      | 0.14      | 34.2          |
| All Ve | hicles    | 105            | 0.0     | 0.033       | 3.4          | LOS A    | 0.2             | 1.2           | 0.05   | 0.43      | 0.05      | 38.5          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:51 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21887\_2041\_AAST\_AM]

Node: 21887 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:46:30 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21887\_2041\_AAST\_AM]

Node: 21887 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move   | ement F   | erformanc      | e - Vel | hicles      |              |          |                 |               |        |           |           |               |
|--------|-----------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------|-----------|---------------|
| Mov    | Turn      | Demand F       |         | Deg.        | Average      | Level of | 95% Back        |               | Prop.  |           | Aver. No. |               |
| ID     |           | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate | Cycles    | Speed<br>km/h |
| South  | : South I |                |         | 10          | 000          |          | Volt            |               |        |           |           |               |
| 1      | L2        | 7              | 0.0     | 0.017       | 2.1          | LOS A    | 0.1             | 0.6           | 0.06   | 0.42      | 0.06      | 36.4          |
| 2      | T1        | 16             | 0.0     | 0.017       | 2.6          | LOS A    | 0.1             | 0.6           | 0.06   | 0.42      | 0.06      | 40.0          |
| 3      | R2        | 1              | 0.0     | 0.017       | 6.3          | LOS A    | 0.1             | 0.6           | 0.06   | 0.42      | 0.06      | 34.0          |
| Appro  | bach      | 24             | 0.0     | 0.017       | 2.6          | LOS A    | 0.1             | 0.6           | 0.06   | 0.42      | 0.06      | 38.7          |
| East:  | East Ro   | ad             |         |             |              |          |                 |               |        |           |           |               |
| 4      | L2        | 1              | 0.0     | 0.004       | 3.3          | LOS A    | 0.0             | 0.2           | 0.28   | 0.46      | 0.28      | 31.5          |
| 5      | T1        | 3              | 0.0     | 0.004       | 3.7          | LOS A    | 0.0             | 0.2           | 0.28   | 0.46      | 0.28      | 34.5          |
| 6      | R2        | 1              | 0.0     | 0.004       | 7.5          | LOS A    | 0.0             | 0.2           | 0.28   | 0.46      | 0.28      | 34.2          |
| Appro  | bach      | 5              | 0.0     | 0.004       | 4.4          | LOS A    | 0.0             | 0.2           | 0.28   | 0.46      | 0.28      | 33.9          |
| North  | : North F | Road           |         |             |              |          |                 |               |        |           |           |               |
| 7      | L2        | 2              | 0.0     | 0.078       | 3.8          | LOS A    | 0.4             | 2.9           | 0.09   | 0.42      | 0.09      | 36.6          |
| 8      | T1        | 111            | 0.0     | 0.078       | 4.0          | LOS A    | 0.4             | 2.9           | 0.09   | 0.42      | 0.09      | 36.5          |
| 9      | R2        | 3              | 0.0     | 0.078       | 8.2          | LOS A    | 0.4             | 2.9           | 0.09   | 0.42      | 0.09      | 35.8          |
| Appro  | bach      | 116            | 0.0     | 0.078       | 4.1          | LOS A    | 0.4             | 2.9           | 0.09   | 0.42      | 0.09      | 36.5          |
| West:  | West R    | oad            |         |             |              |          |                 |               |        |           |           |               |
| 10     | L2        | 3              | 0.0     | 0.013       | 3.0          | LOS A    | 0.1             | 0.4           | 0.10   | 0.55      | 0.10      | 35.1          |
| 11     | T1        | 5              | 0.0     | 0.013       | 3.4          | LOS A    | 0.1             | 0.4           | 0.10   | 0.55      | 0.10      | 33.5          |
| 12     | R2        | 8              | 0.0     | 0.013       | 7.3          | LOS A    | 0.1             | 0.4           | 0.10   | 0.55      | 0.10      | 30.3          |
| Appro  | bach      | 17             | 0.0     | 0.013       | 5.3          | LOS A    | 0.1             | 0.4           | 0.10   | 0.55      | 0.10      | 32.3          |
| All Ve | hicles    | 162            | 0.0     | 0.078       | 4.0          | LOS A    | 0.4             | 2.9           | 0.09   | 0.44      | 0.09      | 36.2          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:53 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21887\_2041\_AAST\_PM]

Node: 21887 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move   | ement P   | Performanc     | e - Vel | hicles      |              |          |                 |          |        |           |           |               |
|--------|-----------|----------------|---------|-------------|--------------|----------|-----------------|----------|--------|-----------|-----------|---------------|
| Mov    | Turn      | Demand F       |         | Deg.        | Average      | Level of | 95% Back        |          | Prop.  |           | Aver. No. |               |
| ID     |           | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate | Cycles    | Speed<br>km/ł |
| South  | : South I |                | 70      | V/C         | 580          |          | Ven             | m        | _      |           |           | K111/1        |
| 1      | L2        | 9              | 0.0     | 0.030       | 2.1          | LOS A    | 0.2             | 1.1      | 0.06   | 0.41      | 0.06      | 36.           |
| 2      | T1        | 34             | 0.0     | 0.030       | 2.6          | LOS A    | 0.2             | 1.1      | 0.06   | 0.41      | 0.06      | 40.           |
| 3      | R2        | 1              | 0.0     | 0.030       | 6.3          | LOS A    | 0.2             | 1.1      | 0.06   | 0.41      | 0.06      | 34.           |
| Appro  | ach       | 44             | 0.0     | 0.030       | 2.6          | LOS A    | 0.2             | 1.1      | 0.06   | 0.41      | 0.06      | 39.           |
| East:  | East Roa  | ad             |         |             |              |          |                 |          |        |           |           |               |
| 4      | L2        | 1              | 0.0     | 0.004       | 3.0          | LOS A    | 0.0             | 0.1      | 0.19   | 0.46      | 0.19      | 32.           |
| 5      | T1        | 3              | 0.0     | 0.004       | 3.4          | LOS A    | 0.0             | 0.1      | 0.19   | 0.46      | 0.19      | 35.           |
| 6      | R2        | 1              | 0.0     | 0.004       | 7.2          | LOS A    | 0.0             | 0.1      | 0.19   | 0.46      | 0.19      | 34.           |
| Appro  | ach       | 5              | 0.0     | 0.004       | 4.1          | LOS A    | 0.0             | 0.1      | 0.19   | 0.46      | 0.19      | 34.           |
| North  | : North F | Road           |         |             |              |          |                 |          |        |           |           |               |
| 7      | L2        | 1              | 0.0     | 0.039       | 3.7          | LOS A    | 0.2             | 1.4      | 0.08   | 0.43      | 0.08      | 36.           |
| 8      | T1        | 52             | 0.0     | 0.039       | 4.0          | LOS A    | 0.2             | 1.4      | 0.08   | 0.43      | 0.08      | 36.           |
| 9      | R2        | 3              | 0.0     | 0.039       | 8.2          | LOS A    | 0.2             | 1.4      | 0.08   | 0.43      | 0.08      | 35.           |
| Appro  | ach       | 56             | 0.0     | 0.039       | 4.2          | LOS A    | 0.2             | 1.4      | 0.08   | 0.43      | 0.08      | 36.3          |
| West:  | West Re   | oad            |         |             |              |          |                 |          |        |           |           |               |
| 10     | L2        | 3              | 0.0     | 0.011       | 3.1          | LOS A    | 0.1             | 0.4      | 0.14   | 0.51      | 0.14      | 35.           |
| 11     | T1        | 6              | 0.0     | 0.011       | 3.5          | LOS A    | 0.1             | 0.4      | 0.14   | 0.51      | 0.14      | 34.           |
| 12     | R2        | 5              | 0.0     | 0.011       | 7.4          | LOS A    | 0.1             | 0.4      | 0.14   | 0.51      | 0.14      | 30.           |
| Appro  | ach       | 15             | 0.0     | 0.011       | 4.8          | LOS A    | 0.1             | 0.4      | 0.14   | 0.51      | 0.14      | 33.           |
| All Ve | hicles    | 120            | 0.0     | 0.039       | 3.7          | LOS A    | 0.2             | 1.4      | 0.08   | 0.43      | 0.08      | 36.           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Thursday, 11 June 2020 9:49:53 AM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

# ₩ Site: 101 [21899\_2041\_AAST\_AM]

Node: 21899 2041 AAST AM Peak Period Site Category: (None) Roundabout



SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Created: Monday, 13 July 2020 2:57:07 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21899\_2041\_AAST\_AM]

Node: 21899 2041 AAST AM Peak Period Site Category: (None) Roundabout

| Move      | ment F    | Performanc                 | e - Vel          | nicles              |                         |                     |                             |                           |                 |                        |                     |      |
|-----------|-----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|------|
| Mov<br>ID | Turn      | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles |      |
| South     | : Bells L | ane                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 4         | L2        | 172                        | 0.0              | 0.318               | 3.9                     | LOS A               | 2.4                         | 16.8                      | 0.24            | 0.40                   | 0.24                | 32.9 |
| 5         | T1        | 305                        | 0.0              | 0.318               | 4.1                     | LOS A               | 2.4                         | 16.8                      | 0.24            | 0.40                   | 0.24                | 50.8 |
| Appro     | ach       | 477                        | 0.0              | 0.318               | 4.1                     | LOS A               | 2.4                         | 16.8                      | 0.24            | 0.40                   | 0.24                | 44.2 |
| North:    | Bells L   | ane                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 11        | T1        | 778                        | 0.0              | 0.578               | 4.7                     | LOS A               | 6.1                         | 42.8                      | 0.47            | 0.45                   | 0.47                | 47.7 |
| 12        | R2        | 52                         | 0.0              | 0.578               | 9.7                     | LOS A               | 6.1                         | 42.8                      | 0.47            | 0.45                   | 0.47                | 38.7 |
| Appro     | ach       | 829                        | 0.0              | 0.578               | 5.0                     | LOS A               | 6.1                         | 42.8                      | 0.47            | 0.45                   | 0.47                | 47.1 |
| West:     | Access    | - Bus, Park                | & Rural          |                     |                         |                     |                             |                           |                 |                        |                     |      |
| 1         | L2        | 22                         | 0.0              | 0.107               | 4.7                     | LOS A               | 0.6                         | 4.3                       | 0.49            | 0.65                   | 0.49                | 40.1 |
| 3         | R2        | 95                         | 0.0              | 0.107               | 10.0                    | LOS A               | 0.6                         | 4.3                       | 0.49            | 0.65                   | 0.49                | 35.0 |
| Appro     | ach       | 117                        | 0.0              | 0.107               | 9.0                     | LOS A               | 0.6                         | 4.3                       | 0.49            | 0.65                   | 0.49                | 36.0 |
| All Vel   | hicles    | 1423                       | 0.0              | 0.578               | 5.0                     | LOS A               | 6.1                         | 42.8                      | 0.39            | 0.45                   | 0.39                | 45.3 |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:54:20 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8

## ₩ Site: 101 [21899\_2041\_AAST\_PM]

Node: 21899 2041 AAST PM Peak Period Site Category: (None) Roundabout

| Move      | ement F   | Performanc                 | e - Vel          | nicles              |                         |                     |                             |                           |                 |                        |                     |                          |
|-----------|-----------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|------------------------|---------------------|--------------------------|
| Mov<br>ID | Turn      | Demand F<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate | Aver. No.<br>Cycles | Average<br>Speed<br>km/h |
| South     | : Bells L | ane                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 4         | L2        | 87                         | 0.0              | 0.387               | 3.8                     | LOS A               | 3.3                         | 23.3                      | 0.15            | 0.37                   | 0.15                | 33.7                     |
| 5         | T1        | 548                        | 0.0              | 0.387               | 3.9                     | LOS A               | 3.3                         | 23.3                      | 0.15            | 0.37                   | 0.15                | 51.8                     |
| Appro     | ach       | 636                        | 0.0              | 0.387               | 3.9                     | LOS A               | 3.3                         | 23.3                      | 0.15            | 0.37                   | 0.15                | 49.2                     |
| North:    | Bells La  | ane                        |                  |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 11        | T1        | 392                        | 0.0              | 0.331               | 4.9                     | LOS A               | 2.5                         | 17.7                      | 0.48            | 0.50                   | 0.48                | 47.7                     |
| 12        | R2        | 19                         | 0.0              | 0.331               | 10.0                    | LOS A               | 2.5                         | 17.7                      | 0.48            | 0.50                   | 0.48                | 38.6                     |
| Appro     | ach       | 411                        | 0.0              | 0.331               | 5.1                     | LOS A               | 2.5                         | 17.7                      | 0.48            | 0.50                   | 0.48                | 47.2                     |
| West:     | Access    | - Bus, Park                | & Rural          |                     |                         |                     |                             |                           |                 |                        |                     |                          |
| 1         | L2        | 48                         | 0.0              | 0.241               | 6.7                     | LOS A               | 1.5                         | 10.6                      | 0.67            | 0.76                   | 0.67                | 38.0                     |
| 3         | R2        | 169                        | 0.0              | 0.241               | 11.9                    | LOS A               | 1.5                         | 10.6                      | 0.67            | 0.76                   | 0.67                | 32.9                     |
| Appro     | ach       | 218                        | 0.0              | 0.241               | 10.7                    | LOS A               | 1.5                         | 10.6                      | 0.67            | 0.76                   | 0.67                | 34.2                     |
| All Ve    | hicles    | 1264                       | 0.0              | 0.387               | 5.5                     | LOS A               | 3.3                         | 23.3                      | 0.35            | 0.48                   | 0.35                | 45.8                     |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Processed: Monday, 15 June 2020 2:54:21 PM Project: P:\P4627 Moss Vale Road North URA Traffic Study\Technical Work\Models\Phase B - URA Intersection Modelling\P4627 URA Intersection Modelling\_AAST\_2041.sip8



## Appendix C: Turn Warrants Assessment



#### Notes:

Turn Warrants Assessment undertaken in accordance with Austroads Guide to Traffic Management Part 6 Intersections Interchanges and Crossings Management (2020). All intersections assessed as two-lane two-way road types (AGTM Part 6 Figure 3.26).

Right turn types assessed without splitter island (AGTM Part 6 Figure 3.26).

Major road assessed as (c) Design Speed  $\leq$  70km/h.

Turn movement volumes extracted from 2041 AAST AM & PM TRACKS Models (May 2020 version).



Note: the minimum right-turn treatment for multilane roads is a CHR(s). Source: TMR (2016a).



Figure 3.26: Calculation of the major road traffic volume  $Q_M$ 



| Road type         | Turn type | Splitter island | Q <sub>M</sub> (veh/h)                                     |
|-------------------|-----------|-----------------|------------------------------------------------------------|
| Two-lane two-way  | Right     | No              | $= Q_{T1} + Q_{T2} + Q_L$                                  |
|                   |           | Yes             | = Q <sub>T1</sub> + Q <sub>T2</sub>                        |
|                   | Left      | Yes or no       | = Q <sub>T2</sub>                                          |
| Four-lane two-way | Right     | No              | = 50% x Q <sub>T1</sub> + Q <sub>T2</sub> + Q <sub>L</sub> |
|                   |           | Yes             | = 50% x Q <sub>T1</sub> + Q <sub>T2</sub>                  |
|                   | Left      | Yes or no       | = 50% x Q <sub>T2</sub>                                    |
| Six-lane two-way  | Right     | No              | = 33% x Q <sub>T1</sub> + Q <sub>T2</sub> + Q <sub>L</sub> |
|                   |           | Yes             | = 33% x Q <sub>T1</sub> + Q <sub>T2</sub>                  |
|                   | Left      | Yes or no       | = 33% x Q <sub>T2</sub>                                    |

Source: TMR (2016a).

|                     |                   |                 | 2041 AM AAST Volumes |     |    |               |     |    |                |     |    |               |     | Turn Warrants Inputs |       |        |                  |      |      |        |            |     |      |                 |      |        |                  |      |          |      |
|---------------------|-------------------|-----------------|----------------------|-----|----|---------------|-----|----|----------------|-----|----|---------------|-----|----------------------|-------|--------|------------------|------|------|--------|------------|-----|------|-----------------|------|--------|------------------|------|----------|------|
|                     |                   |                 | North Approach       |     |    | East Approach |     |    | South Approach |     |    | West Approach |     |                      | Mover | nent 1 | Movement 2 Movem |      |      | nent 3 | Movement 4 |     |      | vement 5 Moveme |      | nent 6 | ent 6 Movement 7 |      | Movement |      |
| Major Road          | Intersection Node | Intersection ID |                      | T   | R  | L             | Т   | R  | L              | Т   | R  | L             | T   | R                    | Qm 1  | Qr 1   | Qm 2             | QI 2 | Qm 3 | Qr 3   | Qm 4       | QI4 | Qm 5 | Qr 5            | Qm 6 | QI 6   | Qm 7             | Qr 7 | Qm 8     | QI 8 |
| Bells Lane          | 21751             | 1               |                      | 147 | 11 |               |     |    |                | 88  |    |               |     |                      | 235   | 11     | 88               | 0    |      |        |            |     |      |                 |      |        |                  |      |          |      |
| Bells Lane          | 21872             | 2               |                      | 220 |    |               |     |    | 4              | 146 |    |               |     |                      | 370   | 0      | 146              | 4    |      |        |            |     |      |                 |      |        |                  |      |          |      |
| Bells Lane          | 21871             | 3               |                      | 199 |    |               |     |    | 11             | 135 |    |               |     |                      | 345   | 0      | 135              | 11   |      |        |            |     |      |                 |      |        |                  |      |          |      |
| Central Boulevard   | 21779             | 4               |                      | 118 |    |               |     |    |                | 81  |    |               |     |                      | 199   | 0      | 81               | 0    |      |        |            |     |      |                 |      |        |                  |      |          |      |
| Central Boulevard   | 21709             | 5               |                      | 258 |    |               |     |    |                | 128 | 3  |               |     |                      |       |        |                  |      | 386  | 3      | 258        | 0   |      |                 |      |        |                  |      |          |      |
| Central Boulevard   | 21833             | 6               |                      | 101 |    |               |     |    | 3              | 44  | 3  |               |     |                      | 148   | 0      | 44               | 3    | 145  | 3      | 101        | 0   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21734             | 7               |                      | 94  |    |               |     |    |                | 43  |    |               |     |                      |       |        |                  |      | 137  | 0      | 94         | 0   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21735             | 8               | 1                    | 86  |    |               |     |    |                | 41  |    |               |     |                      |       |        |                  |      | 128  | 0      | 86         | 1   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21736             | 9               | 3                    | 47  |    |               |     |    |                | 22  | 11 |               |     |                      |       |        |                  |      | 72   | 11     | 47         | 3   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21737             | 10              | 1                    | 50  |    |               |     |    |                | 25  |    |               |     |                      |       |        |                  |      | 76   | 0      | 50         | 1   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21738             | 11              |                      | 41  |    |               |     |    |                | 22  | 5  |               |     |                      |       |        |                  |      | 63   | 5      | 41         | 0   |      |                 |      |        |                  |      |          |      |
| West N-S            | 21739             | 12              |                      | 41  |    |               |     |    |                | 22  |    |               |     |                      |       |        |                  |      | 63   | 0      | 41         | 0   |      |                 |      |        |                  |      |          |      |
| South E-W           | 21732             | 13              |                      |     |    |               | 41  | 8  |                |     |    |               | 102 |                      |       |        |                  |      |      |        |            |     | 143  | 8               | 102  | 0      |                  |      |          |      |
| Abernethy's Lane    | 21777             | 14              |                      |     |    |               | 68  |    |                |     |    |               | 87  |                      |       |        |                  |      |      |        |            |     | 155  | 0               | 87   | 0      |                  |      |          |      |
| Abernethy's Lane    | 21713             | 15              |                      |     |    | 3             | 78  |    |                |     |    |               | 103 | 3                    |       |        |                  |      |      |        |            |     | 181  | 0               | 103  | 0      |                  |      |          |      |
| Abernethy's Lane    | 21785             | 16              |                      |     |    | 9             | 85  |    |                |     |    |               | 113 |                      |       |        |                  |      |      |        |            |     | 198  | 0               | 113  | 0      |                  |      |          |      |
| Abernethy's Lane    | 21714             | 17              |                      |     |    | 9             | 14  |    |                |     |    |               | 14  | 1                    |       |        |                  |      |      |        |            |     |      |                 |      |        | 37               | 1    | 14       | 9    |
| Abernethy's Lane    | 21790             | 18              |                      |     |    |               | 1   |    |                |     |    |               | 1   | 8                    |       |        |                  |      |      |        |            |     |      |                 |      |        | 2                | 8    | 1        | 0    |
| Central E-W         | 21721             | 19              |                      |     |    | 5             | 141 |    |                |     |    |               | 211 |                      |       |        |                  |      |      |        |            |     |      |                 |      |        | 357              | 0    | 141      | 5    |
| Central E-W         | 21720             | 20              |                      |     |    |               | 134 |    |                |     |    |               | 195 |                      |       |        |                  |      |      |        |            |     |      |                 |      |        | 329              | 0    | 134      | 0    |
| Central E-W         | 21719             | 21              |                      |     |    |               | 135 |    |                |     |    |               | 195 | 6                    |       |        |                  |      |      |        |            |     |      |                 |      |        | 330              | 6    | 135      | 0    |
| Central E-W         | 21715             | 22              |                      |     |    |               | 72  | 6  |                |     |    | 1             | 98  |                      |       |        |                  |      |      |        |            |     | 171  | 6               | 98   | 1      |                  |      |          |      |
| Central E-W         | 21834             | 23              |                      |     |    |               | 85  | 12 |                |     |    | 1             | 84  |                      |       |        |                  |      |      |        |            |     | 170  | 12              | 84   | 1      |                  |      |          |      |
| Central E-W         | 21823             | 24              |                      |     |    |               | 89  | 1  |                |     |    |               | 83  | 2                    |       |        |                  |      |      |        |            |     |      |                 |      |        | 172              | 2    | 89       | 0    |
| Central E-W         | 21746             | 25              |                      |     |    |               | 22  | 1  |                |     |    |               | 34  |                      |       |        |                  |      |      |        |            |     | 56   | 1               | 34   | 0      |                  |      |          |      |
| Central E-W         | 21745             | 26              |                      |     |    | 2             | 20  |    |                |     |    |               | 31  |                      |       |        |                  |      |      |        |            |     |      |                 |      |        | 53               | 0    | 20       | 2    |
| Central E-W         | 21851             | 27              |                      |     |    |               | 7   |    |                |     |    |               | 6   | 4                    |       |        |                  |      |      |        |            |     | 13   | 0               | 6    | 0      | 13               | 4    | 7        | 0    |
| Central E-W         | 21742             | 28              |                      |     |    |               | 11  | 1  |                |     |    | 10            | 7   |                      |       |        |                  |      |      |        |            |     | 28   | 1               | 7    | 10     | 18               | 0    | 11       | 0    |
| North E-W           | 21869             | 29              |                      |     |    |               | 35  |    |                |     |    |               | 44  |                      |       |        |                  |      |      |        |            |     | 79   | 0               | 44   | 0      | 79               | 0    | 35       | 0    |
| North E-W           | 21870             | 30              |                      |     |    |               | 79  |    |                |     |    |               | 75  | 1                    |       |        |                  |      |      |        |            |     | 154  | 0               | 75   | 0      |                  |      |          |      |
| Pestells Connection | 21835             | 31              |                      | 142 |    |               |     |    | 4              | 128 |    |               |     |                      | 274   | 0      | 128              | 4    |      |        |            |     |      |                 |      |        |                  |      |          |      |
| Pestells Connection | 21813             | 32              |                      |     |    |               | 140 | 9  |                |     |    | 7             | 107 |                      |       |        |                  |      |      |        |            |     | 254  | 9               | 107  | 7      |                  |      |          |      |
| Pestells Connection | 21808             | 33              |                      |     |    |               | 158 | 2  |                |     |    | 8             | 115 |                      |       |        |                  |      |      |        |            |     | 281  | 2               | 115  | 8      |                  |      |          |      |
| Pestells Connection | 21826             | 34              |                      |     |    |               | 83  |    |                |     |    |               | 297 |                      |       |        |                  |      |      |        |            |     | 380  | 0               | 297  | 0      |                  |      |          |      |
| Pestells Connection | 21824             | 35              |                      |     |    |               | 59  |    |                |     |    | 10            | 178 |                      |       |        |                  |      |      |        |            |     | 247  | 0               | 178  | 10     |                  |      |          |      |

|                            |                   |                 | 2041 PM AAST Volumes |     |               |   |     |                |    |     |               |    |            | Turn Warrants Inputs |      |              |      |        |            |      |       |        |            |      |            |      |      |      |      |      |
|----------------------------|-------------------|-----------------|----------------------|-----|---------------|---|-----|----------------|----|-----|---------------|----|------------|----------------------|------|--------------|------|--------|------------|------|-------|--------|------------|------|------------|------|------|------|------|------|
|                            |                   |                 | North Approach       |     | East Approach |   |     | South Approach |    |     | West Approach |    | Movement 1 |                      | Move | Movement 2 M |      | nent 3 | Movement 4 |      | Mover | nent 5 | Movement 6 |      | Movement 7 |      |      |      |      |      |
| Road                       | Intersection Node | Intersection ID | L                    | Т   | R             | L | Т   | R              | L  | Т   | R             | L  | Т          | R                    | Qm_1 | Qr_1         | Qm_2 | QI_2   | Qm_3       | Qr_3 | Qm_4  | QI_4   | Qm_5       | Qr_5 | Qm_6       | QI_6 | Qm_7 | Qr_7 | Qm_8 | QI_8 |
| Bells Lane                 | 21751             | 1               |                      | 165 |               |   |     |                | 16 | 80  |               |    |            |                      | 261  | 0            | 80   | 16     |            |      |       |        |            |      |            |      |      |      |      |      |
| Bells Lane                 | 21872             | 2               |                      | 152 |               |   |     |                | 7  | 268 |               |    |            |                      | 427  | 0            | 268  | 7      |            |      |       |        |            |      |            |      |      |      |      |      |
| Bells Lane                 | 21871             | 3               |                      | 139 |               |   |     |                | 21 | 247 |               |    |            |                      | 407  | 0            | 247  | 21     |            |      |       |        |            |      |            |      |      |      |      |      |
| Central Boulevard          | 21779             | 4               |                      | 97  |               |   |     |                | 1  | 112 |               |    |            |                      | 210  | 0            | 112  | 1      |            |      |       |        |            |      |            |      |      |      |      |      |
| Central Boulevard          | 21709             | 5               |                      | 163 |               |   |     |                |    | 206 | 6             |    |            |                      |      |              |      |        | 369        | 6    | 163   | 0      |            |      |            |      |      |      |      |      |
| Central Boulevard          | 21833             | 6               |                      | 55  |               |   |     |                | 6  | 80  | 4             |    |            |                      | 141  | 0            | 80   | 6      | 135        | 4    | 55    | 0      |            |      |            |      |      |      |      |      |
| West N-S                   | 21734             | 7               |                      | 59  |               |   |     |                |    | 69  |               |    |            |                      |      |              |      |        | 128        | 0    | 59    | 0      |            |      |            |      |      |      |      |      |
| West N-S                   | 21735             | 8               | 1                    | 55  |               |   |     |                |    | 72  |               |    |            |                      |      |              |      |        | 128        | 0    | 55    | 1      |            |      |            |      |      |      |      |      |
| West N-S                   | 21736             | 9               | 4                    | 32  |               |   |     |                |    | 40  | 20            |    |            |                      |      |              |      |        | 76         | 20   | 32    | 4      |            |      |            |      |      |      |      |      |
| West N-S                   | 21737             | 10              | 1                    | 35  |               |   |     |                |    | 43  |               |    |            |                      |      |              |      |        | 79         | 0    | 35    | 1      |            |      |            |      |      |      |      |      |
| West N-S                   | 21738             | 11              |                      | 31  |               |   |     |                |    | 36  | 8             |    |            |                      |      |              |      |        | 67         | 8    | 31    | 0      |            |      |            |      |      |      |      | 1    |
| West N-S                   | 21739             | 12              |                      | 31  |               |   |     |                |    | 36  |               |    |            |                      |      |              |      |        | 67         | 0    | 31    | 0      |            |      |            |      |      |      |      |      |
| South E-W                  | 21732             | 13              |                      |     |               |   | 68  | 24             |    |     |               |    | 61         |                      |      |              |      |        |            |      |       |        | 129        | 24   | 61         | 0    |      |      |      | 1    |
| Abernethy's Lane           | 21777             | 14              |                      |     |               |   | 68  |                |    |     |               |    | 87         |                      |      |              |      |        |            |      |       |        | 155        | 0    | 87         | 0    |      |      |      |      |
| Abernethy's Lane           | 21713             | 15              |                      |     |               | 3 | 90  |                |    |     |               |    | 76         | 2                    |      |              |      |        |            |      |       |        | 166        | 0    | 76         | 0    |      |      |      | 1    |
| Abernethy's Lane           | 21785             | 16              |                      |     |               | 8 | 99  |                |    |     |               |    | 85         |                      |      |              |      |        |            |      |       |        | 184        | 0    | 85         | 0    |      |      |      |      |
| Abernethy's Lane           | 21714             | 17              |                      |     |               | 7 | 15  |                |    |     |               |    | 13         | 1                    |      |              |      |        |            |      |       |        |            |      |            |      | 35   | 1    | 15   | 7    |
| Abernethy's Lane           | 21790             | 18              |                      |     |               |   | 1   |                |    |     |               |    | 1          | 8                    |      |              |      |        |            |      |       |        |            |      |            |      | 2    | 8    | 1    | 0    |
| Central E-W                | 21721             | 19              |                      |     |               | 9 | 252 |                |    |     |               |    | 182        |                      |      |              |      |        |            |      |       |        |            |      |            |      | 443  | 0    | 252  | 9    |
| Central E-W                | 21720             | 20              |                      |     |               |   | 230 |                |    |     |               |    | 173        |                      |      |              |      |        |            |      |       |        |            |      |            |      | 403  | 0    | 230  | 0    |
| Central E-W                | 21719             | 21              |                      |     |               |   | 231 |                |    |     |               |    | 173        | 7                    |      |              |      |        |            |      |       |        |            |      |            |      | 404  | 7    | 231  | 0    |
| Central E-W                | 21715             | 22              |                      |     |               |   | 101 | 12             |    |     |               | 2  | 88         |                      |      |              |      |        |            |      |       |        | 191        | 12   | 88         | 2    |      |      |      |      |
| Central E-W                | 21834             | 23              |                      |     |               |   | 98  | 21             |    |     |               | 2  | 92         |                      |      |              |      |        |            |      |       |        | 192        | 21   | 92         | 2    |      |      |      |      |
| Central E-W                | 21823             | 24              |                      |     |               |   | 100 | 1              |    |     |               |    | 92         | 1                    |      |              |      |        |            |      |       |        |            |      |            |      | 192  | 1    | 100  | 0    |
| Central E-W                | 21746             | 25              |                      |     |               |   | 32  | 1              |    |     |               |    | 24         |                      |      |              |      |        |            |      |       |        | 56         | 1    | 24         | 0    |      |      |      |      |
| Central E-W                | 21745             | 26              |                      |     |               | 3 | 29  |                |    |     |               |    | 21         |                      |      |              |      |        |            |      |       |        |            |      |            |      | 53   | 0    | 29   | 3    |
| Central E-W                | 21851             | 27              |                      |     |               |   | 10  |                |    |     |               |    | 6          | 7                    |      |              |      |        |            |      |       |        | 16         | 0    | 6          | 0    | 16   | 7    | 10   | 0    |
| Central E-W                | 21742             | 28              |                      |     |               |   | 14  | 1              |    |     |               | 13 | 13         |                      |      |              |      |        |            |      |       |        | 40         | 1    | 13         | 13   | 27   | 0    | 14   | 0    |
| North E-W                  | 21869             | 29              |                      |     |               |   | 49  |                |    |     |               |    | 41         |                      |      |              |      |        |            |      |       |        | 90         | 0    | 41         | 0    | 90   | 0    | 49   | 0    |
| North E-W                  | 21870             | 30              |                      |     |               |   | 139 |                |    |     |               |    | 65         | 1                    |      |              |      |        |            |      |       |        | 204        | 0    | 65         | 0    |      |      |      |      |
| <b>Pestells Connection</b> | 21835             | 31              |                      | 150 |               |   |     |                | 7  | 145 |               |    |            |                      | 302  | 0            | 145  | 7      |            |      |       |        |            |      |            |      |      |      |      |      |
| <b>Pestells Connection</b> | 21813             | 32              |                      |     |               |   | 123 | 13             |    |     |               | 12 | 143        |                      |      | _            |      |        |            |      |       |        | 278        | 13   | 143        | 12   |      |      |      |      |
| <b>Pestells Connection</b> | 21808             | 33              |                      |     |               |   | 131 | 2              |    |     |               | 11 | 149        |                      |      |              |      |        |            |      |       |        | 291        | 2    | 149        | 11   |      |      |      |      |
| <b>Pestells Connection</b> | 21826             | 34              |                      |     |               |   | 169 |                |    |     |               |    | 143        |                      |      |              |      |        |            |      |       |        | 312        | 0    | 143        | 0    |      |      |      |      |
| <b>Pestells Connection</b> | 21824             | 35              |                      |     |               |   | 124 |                |    |     |               | 12 | 85         |                      |      |              |      |        |            |      |       |        | 221        | 0    | 85         | 12   |      |      |      |      |